Основной состав белков. Курсовая работа: Изучение элементов химического состава пищевых продуктов на примере белков. Оригинальную гипотезу высказал советский химик Д.Л.Талмуд. Он предположил, что пептидные цепи в составе белковых молекул свернуты в больши

Аминокислоты — структурные компоненты белков.Белки, или протеины (греч. protos — первостепенный), — это биологические гетерополимеры, мономерами которых являются аминокислоты.

Аминокислоты представляют собой низкомолекулярные органические соединения, содержащие карбоксильную (-СООН) и аминную (-NH 2) группы, которые связаны с одним и тем же атомом углерода. К атому углерода присоединяется боковая цепь — какой-либо радикал, придающий каждой аминокислоте определенные свойства. Общая формула аминокислот имеет вид:

У большей части аминокислот имеется одна карбоксильная группа и одна аминогруппа; эти аминокислоты называютсянейтральными. Существуют, однако, и основные аминокислоты — с более чем одной аминогруппой, а также кислые аминокислоты — с более чем одной карбоксильной группой.

Известно около 200 аминокислот, встречающихся в живых организмах, однако только 20 из них входят в состав белков. Это так называемые основные, или белокобразующие (протеиногенные), аминокислоты.

В зависимости от вида радикала основные аминокислоты делят на три группы: 1) неполярные (аланин, метионин, валин, про-лин, лейцин, изолейцин, триптофан, фенилаланин); 2) полярные незаряженные (аспарагин, глутамин, серии, глицин, тирозин, треонин, цистеин); 3) полярные заряженные (аргинин, гистидин, лизин — положительно; аспарагиновая и глутаминовая кислоты — отрицательно).

Боковые цепи аминокислот (радикал) могут быть гидрофобными или гидрофильными, что придает белкам соответствующие свойства, которые проявляются при образовании вторичной, третичной и четвертичной структур белка.

У растений все необходимые аминокислоты синтезируются из первичных продуктов фотосинтеза. Человек и животные не способны синтезировать ряд протеиногенных аминокислот и должны получать их в готовом виде вместе с пищей. Такие аминокислоты называются незаменимыми. К ним относятся лизин, валин, лейцин, изолейцин, треонин, фенилаланин, триптофан, метионин; атакже аргинин и гистидин — незаменимые для детей,

В растворе аминокислоты могут выступать в роли как кислот, так и оснований, т. е. они являются амфотерными соединениями. Карбоксильная группа -СООН способна отдавать протон, функционируя как кислота, а аминная - NH2 — принимать протон, проявляя таким образом свойства основания.

Пептиды. Аминогруппа одной аминокислоты способна вступать в реакцию с карбоксильной группой другой аминокислоты.

Образующаяся при этом молекула представляет собой дипептид, а связь -CO-NH- называется пептидной связью:

На одном конце молекулы дипептида находится свободная аминогруппа, а на другом — свободная карбоксильная группа. Благодаря этому дипептид может присоединять к себе другие аминокислоты, образуя олигопептиды. Если таким образом соединяется много аминокислот (более десяти), то получается полипептид.

Пептиды играют важную роль в организме. Многие олиго- и полипептиды являются гормонами, антибиотиками, токсинами.

К олигопептидам относятся окситоцин, вазопрессин, тиреотропин, а также брадикинин (пептид боли) и некоторые опиаты («естественные наркотики» человека), выполняющие функцию обезболивания. Принятие наркотиков разрушает опиатную систему организма, поэтому наркоман без дозы наркотиков испытывает сильную боль — «ломку», которая в норме снимается опиатами. К олигопептидам относятся и некоторые антибиотики (например, грамицидин S).

Многие гормоны (инсулин, адренокортикотропный гормон и др,), антибиотики (например, грамицидин А), токсины (например, дифтерийный токсин) являются полипептидами.

Белки представляют собой полипептиды, в молекулу которых входит от пятидесяти до нескольких тысяч аминокислот с относительной молекулярной массой свыше 10 000.

Структура белков. Каждому белку в определенной среде свойственна особая пространственная структура. При характеристике пространственной (трехмерной) структуры выделяют четыре уровня организации молекул белков (рис. 1,1).

лиэ—глу—тре—ала—ала—ала—лиз—фен—глу—арг—глн—гиc—мет—асп—сер—
сер—тре—сер—ала—ала—сер—сер—сер—асн—тир—цис—асн—глу—мет—мет—
лиз—сер—арг—асн—лей—тре—лиз—асп—арг—цис—лиз—про—вал—асн—тре—
фен-—вал—гис—глу—сер—лей—ала—асп—вал—глн—ала—вал—цис—сер—глн—
лиз—асн—вал—ала—цис—лиз—асн—гли—глн—тре—асн—цис—три—глн—сер—
три—сер—тре—мет—сер—иле—тре—асп—цис—арг—глу—тре—гли—сер—сер-
лиэ—тир—про—асн—цис—ала—тир—лиэ—тре—тре—глн—ала—асн—лиз—гис—
иле—иле—вал—ала—цис—глу—гли—асн—про—тир—вал—про—вал—гис—фен—
асп—ала—сер—вал

Рис. 1.1. Уровни структурной организации белка: а первичная структура — аминокислотная последовательность белкарибонуклеазы (124 аминокислотных звена); б вторичная структура пояипептидная цепь закручена в виде спирали; в третичная структура белка миоглобина; г четвертичная структура гемоглобина.

Первичная структура — последовательность аминокислот в полипептидной цепи. Такая структура специфична для каждого белка и определяется генетической информацией, т. е. зависит от последовательности нуклеотидов в участке молекулы ДНК, кодирующем данный белок. От первичной структуры зависят все свойства и функции белков. Замена одной-единственной аминокислоты в составе молекул белка или нарушение порядка в их расположении обычно влечет за собой изменение функции белка.

Учитывая, что в состав белков входит 20 видов аминокислот, число вариантов их комбинаций в полипептидной цепи поистине безгранично, что обеспечивает огромное количество видов белков в живых клетках. Например, в организме человека обнаружено более 10 тыс. различных белков, и все они построены из одних и тех же 20 основных аминокислот.

В живых клетках молекулы белков или отдельные их участки представляют собой не вытянутую цепь, а скручены в спираль, напоминающую растянутую пружину (это так называемая а-спираль), или сложены в складчатый слой (р-слой). Такие а-спирали и р-слои являются вторичной структурой. Она возникает в результате образования водородных связей внутри одной полипептидной цепи (спиральная конфигурация) или между двумя полипептидными цепями (складчатые слои).

Полностью a-спиральную конфигурацию имеет белок кератин. Это структурный белок волос, ногтей, когтей, клюва, перьев и рогов; он входит в состав наружного слоя кожи позвоночных.

У большинства белков спиральные и неспиральные участки полипептидной цепи складываются в трехмерное образование шаровидной формы — глобулу (характерна для глобулярных белков). Глобула определенной конфигурации является третичной структурой белка. Такая структура стабилизируется ионными, водородными, ковалентными дисульфидными связями (образуются между атомами серы, входящими в состав цистеи-на, цистина и мегионина), а также гидрофобными взаимодействиями. Наиболее важными в возникновении третичной структуры являются гидрофобные взаимодействия; белок при этом свертывается таким образом, что его гидрофобные боковые цепи скрыты внутри молекулы, т. е. защищены от соприкосновения с водой, а гидрофильные боковые цепи, наоборот, выставлены наружу.

Многие белки с особо сложным строением состоят из нескольких полипептидных цепей (субъединиц), образуя четвертичную структуру белковой молекулы. Такая структура имеется, например, у глобулярного белка гемоглобина. Его молекула состоит из четырех отдельных полипептидных субъединиц (протомеров), находящихся в третичной структуре, и небелковой части — гема.

Только в такой структуре гемоглобин способен выполнять свою транспортную функцию.

Под влиянием различных химических и физических факторов (обработка спиртом, ацетоном, кислотами, щелочами, высокой температурой, облучением, высоким давлением и т. д.) происходит изменение вторичной, третичной и четвертичной структур белка вследствие разрыва водородных и ионных связей. Процесс нарушения нативной (естественной) структуры белка называетсяденатурацией. При этом наблюдается уменьшение растворимости белка, изменение формы и размеров молекул, потеря ферментативной активности и т. д. Процесс денатурации может быть полным или частичным. В некоторых случаях переход к нормальным условиям среды сопровождается самопроизвольным восстановлением естественной структуры белка. Такой процесс называется ренатурацией.

Простые и сложные белки. По химическому составу выделяют белки простые и сложные. К простьм относятся белки, состоящие только из аминокислот, а к сложный — белки, содержащие белковую часть и небелковую (простетическую); простетическую группу могут образовывать ионы металлов, остаток фосфорной кислоты, углеводы, липиды и др. Простыми белками являются сывороточный альбумин крови, фибрин, некоторые ферменты (трипсин) и др. К сложным белкам относятся все протеолипиды и гликопротеины; сложными белками являются, например, иммуноглобулины (антитела), гемоглобин, большинство ферментов и т. д.

Функции белков.

  1. Структурная. Белки входят в состав клеточных мембран и матрикса органелл клетки. Стенки кровеносных сосудов, хрящи, сухожилия, волосы, ногти, когти у высших животных состоят преимущественно из белков.
  2. Каталитическая (ферментативная). Белки-ферменты катализируют протекание всех химических реакций в организме. Они обеспечивают расщепление питательных веществ в пищеварительном тракте, фиксацию углерода при фотосинтезе и т. д.
  3. Транспортная. Некоторые белки способны присоединять и переносить различные вещества. Альбумины крови транспортируют жирные кислоты, глобулины -— ионы металлов и гормоны, гемоглобин — кислород и углекислый газ. Молекулы белков, входящие в состав плазматической мембраны, принимают участие в транспортировке веществ в клетку.
  4. Защитная. Ее выполняют иммуноглобулины (антитела) крови, обеспечивающие иммунную защиту организма. Фибриноген и тромбин участвуют в свертывании крови и предотвращают кровотечение.
  5. Сократительная. Благодаря скольжению относительно друг друга актиновых и миозиновых протофибрилл происходит сокращение мышц, а также немышечные внутриклеточные сокращения. Движение ресничек и жгутиков связано со скольжением относительно друг друга микротрубочек, имеющих белковую природу.
  6. Регуляторная. Многие гормоны являются олигопептидами или бедками (например, инсулин, глюкагон [антагонист инсулина], адренокортикотропный гормон и др.).
  7. Рецепторная. Некоторые белки, встроенные в клеточную мембрану, способны изменять свою структуру под воздействием внешней среды. Так происходит прием сигналов извне и передача информации в клетку. Примером может служить фито-хром —- светочувствительный белок, регулирующий фотопериодическую реакцию растений, и опсин — составная часть родопсина, пигмента, находящегося в клетках сетчатки глаза.
  8. Энергетическая. Белки могут служить источником энергии в клетке (после их гидролиза). Обычно белки расходуются на энергетические нужды в крайних случаях, когда исчерпаны запасы углеводов и жиров.

Ферменты (энзимы). Это специфические белки, которые присутствуют во всех живых организмах и играют роль биологических катализаторов.

Химические реакции в живой клетке протекают при определенной температуре, нормальном давлении и соответствующей кислотности среды. В таких условиях реакции синтеза или распада веществ протекали бы в клетке очень медленно, если бы они не подвергались воздействиям ферментов. Ферменты ускоряют реакцию без изменения ее общего результата за счет сниженияэнергии активации, т. е. при их присутствии требуется значительно меньше энергии для придания реакционной способности молекулам, которые вступают в реакцию, или реакция идет по другому пути с меньшим энергетическим барьером.

Все процессы в живом организме прямо или косвенно осуществляются с участием ферментов. Например, под их действием составные компоненты пищи (белки, углеводы, липиды и др.) расщепляются до более простых соединений, а из них уже затем синтезируются новые, свойственные данному виду макромолекулы. Поэтому нарушения образования и активности ферментов нередко ведут к возникновению тяжелых болезней.

По пространственной организации ферменты состоят из нескольких пол и пептидных цепей и обычно обладают четвертичной структурой. Кроме того, ферменты могут включать и небелковые структуры. Белковая часть носит название апофермент, а небелковая — кофактор (если это катионы или анионы неорганических веществ, например, Zn 2- Мп 2+ и т. д.) или кофермент (коэнзим) (если это низкомолекулярное органическое вещество).

Предшественниками или составными частями Многих кофер-ментов являются витамины. Так, пантотеновая кислота — составная часть коэнзима А, никотиновая кислота (витамин РР) — предшественник НАД и НАДФ и т. д.

Ферментативный катализ подчиняется тем же законам, что и неферментативный катализ в химической промышленности, однако в отличие от него характеризуется необычайно высокой степенью специфичности (фермент катализирует только одну реакцию или действует только на один тип связи). Этим обеспечивается тонкая регуляция всех жизненно важных процессов (дыхание, пищеварение, фотосинтез и др.), протекающих в клетке и организме. Например, фермент уреаза катализирует расщепление лишь одного вещества — мочевины (H 2 N-CO-NH 2 + Н 2 О —> —» 2NH 3 + СО 2), не оказывая каталитического действия на структурно-родственные соединения.

Для понимания механизма действия ферментов, обладающих высокой специфичностью, очень важна теория активного центра. Согласно ей, в молекуле каждого фермента имеется одни участок или более, в которых происходит катализ за счет тесного (во многих точках) контакта между молекулами фермента и специфического вещества (субстрата). Активным центром выступает или функциональная группа (например, ОН-группа серина), или отдельная аминокислота. Обычно же для каталитического действия необходимо сочетание нескольких (в среднем от 3 до 12) расположенных в определенном порядке аминокислотных остатков. Активный центр также формируется связанными с ферментом ионами металлов, витаминами и другими соединениями небелковой природы — коферментами, или кофакторами. Причем форма и химическое строение активного центра таковы, что с ним могут связываться только определенные субстраты в силу их идеального соответствия (взаимодополняемости или. комплементарности) друг другу. Роль остальных аминокислотных остатков в крупной молекуле фермента состоит в том, чтобы обеспечить его молекуле соответствующую глобулярную форму, которая нужна для эффективной работы активного центра. Кроме того, вокруг крупной молекулы фермента возникает сильное электрическое поле. В таком поле становится возможной ориентация молекул субстрата и приобретение ими асимметричной формы. Это приводит к ослаблению химических связей, и катализируемая реакция происходит с меньшей начальной затратой энергии, а следовательно, с намного большей скоростью. Например, одна молекула фермента каталазы может расщепить за 1 мин более 5 млн. молекул пероксида водорода (Н 2 0 2), который возникает при окислении в организме различных соединений.

У некоторых ферментов в присутствии субстрата конфигурация активного центра претерпевает изменения, т. е. фермент ориентирует свои функциональные группы таким образом, чтобы обеспечить наибольшую каталитическую активность.

На заключительном этапе химической реакции фермент-субстратный комплекс разъединяется с образованием конечных продуктов и свободного фермента. Освободившийся при этом активный центр может принимать новые молекулы субстрата.

Скорость ферментативных реакций зависит от многих факторов: природы и концентрации фермента и субстрата, температуры, давления, кислотности среды, наличия ингибиторов и т. д. Например, при температурах, близких к нулю, скорость биохимических реакций замедляется до минимума. Это свойство широко используется в различных отраслях народного хозяйства, особен-но в сельском хозяйстве и медицине. В частности, консервация различных органов (почек, сердца, селезенки, печени) перед их пересадкой больному происходит при охлаждении с целью снижения интенсивности биохимических реакций и продления времени жизни органов. Быстрое замораживание пищевых продуктов предотвращает рост и размножение микроорганизмов (бактерий, грибов и др.), атакже инактивирует их пищеварительные ферменты, так что они оказываются уже не в состоянии вызвать разложение пищевых продуктов.

Источник : Н.А. Лемеза Л.В.Камлюк Н.Д. Лисов "Пособие по биологии для поступающих в ВУЗы"

Известно, что в основе живой материи лежат органические вещества – белки, жиры, углеводы и нуклеиновые кислоты. Но самое важное место среди этих веществ занимает белок.

Большинство известных науке веществ при нагревании переходят из твердого вещества в жидкое. Но есть вещества, которые, наоборот, при нагревании переходят в твердое состояние. Эти вещества объединил в отдельный класс французский химик Пьер Джозеф Маке в 1777 г. По аналогии с яичным белком, который сворачивается при нагревании, эти вещества были названы белками. Белки иначе называются протеинами. По-гречески протеин (протейос) означает «занимающий первое место». Это название белок получил в 1838 г., когда голландский биохимик Жерар Мюльдер написал, что жизнь на планете была бы невозможна без некоего вещества, которое является наиболее важным из всех известных науке веществ и которое обязательно присутствует абсолютно во всех растениях и животных. Это вещество Мюльдер назвал протеин.

Белок – это самое сложное вещество среди всех питательных веществ. В каждой клетке человеческого организма происходят химические реакции, в которых очень важную роль играет белок.

Из чего состоит белок

В состав белков входят: азот, кислород, водород, углерод. А вот другие питательные вещества азот не содержат.

Белок – это природный полимер. А полимеры – это вещества, молекулы которых содержат очень большое количество атомов. Ещё в XIX векерусский химик Александр Михайлович Бутлеров доказал, что если изменяется строение молекулы, то изменяются и свойства вещества. Основным строительным материалом белков являются аминокислоты. А в белках встречаются различные сочетания аминокислот. Следовательно, в природе существует большое разнообразие белков с различными свойствами. С помощью исследований обнаружили примерно 20 аминокислот, которые участвуют в создании белков.

Как происходит процесс образования молекулы белка

Аминокислоты присоединяются друг к другу последовательно. В результате этого процесса образуется цепочка, которая называется полипептид. Впоследствии полипептиды могут сворачиваться в спирали или принимать другую форму. Свойства белка зависят от состава аминокислот, от того, какое количество аминокислот участвует в синтезе, и в каком порядке эти аминокислоты присоединяются друг к другу. Например, в синтезе двух белков участвует одинаковое количество аминокислот, имеющих к тому же одинаковый состав. Но если эти аминокислоты будут располагаться в разной последовательности, то мы получим два абсолютно разных белка.

Если пептиды содержат не более 15 аминокислотных остатков, то они называются олигопептиды. А пептиды, содержащие до нескольких десятков тысяч или даже сотен тысяч аминокислотных остатков, называются белками. Молекула белка имеет компактную пространственную структуру. Эта структура может быть в виде волокон. Такие белки называются фибриллярными. Они являются строительными белками. Если молекула белка имеет структуру в виде шара, то белки называются глобулярными. К таким белкам относятся ферменты, антитела, некоторые гормоны.

В зависимости от того, какие аминокислоты входят в состав белков, белки бывают полноценные и неполноценные. В состав полноценных белков входит полный набор аминокислот. В неполноценных белках некоторые аминокислоты отсутствуют.

Белки также подразделяются на простые и сложные. Простые белки содержат только аминокислоты. В состав сложных белков кроме аминокислот входят ещё и металлы, углеводы, липиды, нуклеиновые кислоты.

Роль белков в организме человека

В организме человека белки выполняют различные функции.

1. Структурная . Белки входят в состав клеток всех тканей и органов.

2. Защитная . Белок интерферон синтезируется в организме для защиты от вирусов.

3. Двигательна я. Белок миозин участвует в процессе сокращения мышц.

4. Транспортная. Гемоглобин, являющийся белком, в составе эритроцитов участвует в переносе кислорода и углекислого газа.

5. Энергетическа я. В результате окисления молекул белков освобождается энергия, необходимая для жизнедеятельности организма.

6. Каталитическа я. Белки ферменты выступают в роли биологических катализаторов, увеличивающих скорость химических реакций в клетках.

7. Регуляторна я. Гормоны регулируют различные функции организма. Например, инсулин регулирует уровень сахара в крови.

В природе существует огромное количество белков, способных выполнять самые разнообразные функции. Но самая главная функция белков – поддержание жизни на Земле совместно с другими биомолекулами.

Химический состав белков.

3.1. Пептидная связь

Белки представляют собой нерегулярные полимеры, построенные из остатков -аминокислот, общую формулу которых в водном растворе при значениях pH близких к нейтральным можно записать как NH 3 + CHRCOO – . Остатки аминокислот в белках соединены между собой амидной связью между -амино- и -карбоксильными группами. Пептидная связь между двумя -аминокислотными остатками обычно называется пептидной связью , а полимеры, построенные из остатков -аминокислот, соединенных пептидными связями, называют полипептидами. Белок как биологически значимая структура может представлять собой как один полипептид, так и несколько полипептидов, образующих в результате нековалентных взаимодействий единый комплекс.

3.2. Элементный состав белков

Изучая химический состав белков, необходимо выяснить, во-первых, из каких химических элементов они состоят, во-вторых, - строение их мономеров. Для ответа на первый вопрос определяют количественный и качественный состав химических элементов белка. Химический анализ показал наличие во всех белках углерода (50-55%), кислорода (21-23%), азота (15-17%), водорода (6-7%), серы (0,3-2,5%). В составе отдельных белков обнаружены также фосфор, йод, железо, медь и некоторые другие макро- и микроэлементы, в различных, часто очень малых количествах.

Содержание основных химических элементов в белках может различаться, за исключением азота, концентрация которого характеризуется наибольшим постоянством и в среднем составляет 16%. Кроме того, содержание азота в других органических веществах мало. В соответствии с этим было предложено определять количество белка по входящему в его состав азоту. Зная, что 1г азота содержится в 6,25 г белка, найденное количество азота умножают коэффициент 6,25 и получают количество белка.

Для определения химической природы мономеров белка необходимо решить две задачи: разделить белок на мономеры и выяснить их химический состав. Расщепление белка на его составные части достигается с помощью гидролиза – длительного кипячения белка с сильными минеральными кислотами (кислотный гидролиз) или основаниями (щелочной гидролиз) . Наиболее часто применяется кипячение при 110  С с HCl в течение 24 ч. На следующем этапе разделяют вещества, входящие в состав гидролизата. Для этой цели применяют различные методы, чаще всего – хроматографию (подробнее – глава “Методы исследования…”). Главным частью разделенных гидролизатов оказываются аминокислоты.

3.3. Аминокислоты

В настоящее время в различных объектах живой природы обнаружено до 200 различных аминокислот. В организме человека их, например, около 60. Однако в состав белков входят только 20 аминокислот, называемых иногда природными.

Аминокислоты – это органические кислоты, у которых атом водорода -углеродного атома замещен на аминогруппу – NH 2 . Следовательно, по химической природе это -аминокислоты с общей формулой:

H – C  – NH 2

Из этой формулы видно, что в состав всех аминокислот входят следующие общие группировки: – CH 2 , – NH 2 , – COOH. Боковые же цепи (радикалы – R ) аминокислот различаются. Как видно из Приложения I химическая природа радикалов разнообразна: от атома водорода до циклических соединений. Именно радикалы определяют структурные и функциональные особенности аминокислот.

Все аминокислоты, кроме простейшей аминоуксусной к-ты глицина (NH 3 + CH 2 COO ) имеют хиральный атом C  и могут существовать в виде двух энантиомеров (оптических изомеров):

COO – COO –

NH 3 + R R NH 3 +

L -изомер D -изомер

В состав всех изученных в настоящее время белков входят только аминокислоты L-ряда, у которых, если рассматривать хиральный атом со стороны атома H, группы NH 3 + , COO  и радикал R расположены по часовой стрелке. Необходимость при построении биологически значимой полимерной молекулы строить ее из строго определенного энантиомера очевидна – из рацемической смеси двух энантиомеров получилась бы невообразимо сложная смесь диастереоизомеров. Вопрос, почему жизнь на Земле основана на белках, построеных именно из L-, а не D--аминокислот, до сих пор остается интригующей загадкой. Следует отметить, что D-аминокислоты достаточно широко распространены в живой природе и, более того, входят в состав биологически значимых олигопептидов.

Из двадцати основных -аминокислот строятся белки, однако остальные, достаточно разнообразные аминокислоты образуются из этих 20 аминокислотных остатков уже в составе белковой молекулы. Среди таких превращений следует в первую очередь отметить образование дисульфидных мостиков при окислении двух остатков цистеина в составе уже сформированных пептидных цепей. В результате образуется из двух остатков цистеина остаток диаминодикарбоновой кислоты цистина (см. Приложение I). При этом возникает сшивка либо внутри одной полипептидной цепи, либо между двумя различными цепями. В качестве небольшого белка, имеющего две полипептидные цепи, соединенный дисульфидными мостиками, а также сшивки внутри одной из полипептидных цепей:

GIVEQCCA SVCSLY QLENYCN

FVNQHLC GSHLVEALYLVC GERGFFYTPKA

Важным примером модификации аминокислотных остатков является превращение остатков пролина в остатки гидроксипролина :

N – CH – CO – N – CH – CO –

CH 2 CH 2 CH 2 CH 2

CH 2 CHOH

Это превращение происходит, причем в значительном масштабе, при образовании важного белкового компонента соединительной ткани – коллагена .

Еще одним весьма важным видом модификации белков является фосфорилирование гидроксогрупп остатков серина, треонина и тирозина, например:

– NH – CH – CO – – NH – CH – CO –

CH 2 OH CH 2 OPO 3 2 –

Аминокислоты в водном растворе находятся в ионизированном состоянии за счет диссоциации амино- и карбоксильных групп, входящих в состав радикалов. Другими словами, они являются амфотерными соединениями и могут существовать либо как кислоты (доноры протонов), либо как основания (акцепторы доноров).

Все аминокислоты в зависимости от структуры разделены на несколько групп:

Ациклические . Моноаминомонокарбоновые аминокислоты имеют в своем составе одну аминную и одну карбоксильную группы, в водном растворе они нейтральны. Некоторые из них имеют общие структурные особенности, что позволяет рассматривать их вместе:

    Глицин и аланин. Глицин (гликокол или аминоуксусная к-та) является оптически неактивным – это единственная аминокислота, не имеющая энатиомеров. Глицин участвует в образовании нуклеиновых и желчных к-т, гема, необходим для обезвреживания в печени токсичных продуктов. Аланин используется организмом в различных процессах обмена углеводов и энергии. Его изомер -аланин является составной частью витамина пантотеновой к-ты, коэнзима А (КоА), экстрактивных веществ мышц.

    Серин и треонин. Они относятся к группе гидрооксикислот, т.к. имеют гидроксильную группу. Серин входит в состав различных ферментов, основного белка молока – казеина, а также в состав многих липопротеинов. Треонин участвует в биосинтезе белка, являясь незаменимой аминокислотой.

    Цистеин и метионин. Аминокислоты, имеющие в составе атом серы. Значение цистеина определяется наличием в ее составе сульфгидрильной (– SH) группы, которая придает ему способность легко окисляться и защищать организм о веществ с высокой окислительной способностью (при лучевом поражении, отравлении фосфором). Метионин характеризуется наличием легко подвижной метильной группы, использующейся для синтеза важных соединений в организме (холина, креатина, тимина, адреналина и др.)

    Валин, лейцин и изолейцин. Представляют собой разветвленные аминокислоты, которые активно участвуют в обмене веществ и не синтезируются в организме.

Моноаминодикарбоновые аминокислоты имеют одну аминную и две карбоксильные группы и в водном растворе дают кислую реакцию. К ним относятся аспарагиновая и глутаминовая к-ты, аспарагин и глутамин. Они входят в состав тормозных медиаторов нервной системы.

Диаминомонокарбоновые аминокислоты в водном растворе имеют щелочную реакцию за сет наличия двух аминных групп. Относящийся к ним лизин необходим для синтеза гистонов а также в ряд ферментов. Аргинин участвует в синтезе мочевины,креатина.

Циклические . Эти аминокислоты имеют в своем составе ароматическое или гетероциклическое ядро и, как правило, не синтезируется в организме человека и должны поступать с пищей. Они активно участвуют в разнообразных обменных процессах. Так

фенил-аланин служит основным источником синтеза тирозина – предшественника ряда биологически важных веществ: гормонов (тироксина, адреналина), некоторых пигментов. Триптофан помимо участия в синтезе белка, служит компонентом витамина PP, серотонина, триптамина, ряда пигментов. Гистидин необходим для синтеза белков, является предшественником гистамина, влияющего на кровяное давление и секрецию желудочного сока.

Свойства

Белки являются высокомолекулярными соединениями. Это полимеры, состоящие из сотен и тысяч аминокислотных остатков – мономеров.

Белки имеют высокую молекулярную массу, некоторые растворимы в воде, способны к набуханию, характеризуются оптической активностью, подвижностью в электрическом поле и некоторыми другими свойствами.

Белки активно вступают в химические реакции. Это свойство связано с тем, что аминокислоты, входящие в состав белков, содержат разные функциональные группы, способные реагировать с другими веществами. Важно, что такие взаимодействия происходят и внутри белковой молекулы, в результате чего образуется пептидная, водородная дисульфидная и другие виды связей. К радикалам аминокислот, а Соответственно и молекулярная масса белков находится в пределах 10 000 – 1 000 000. Так, в составе рибонуклеазы (фермента, расщепляющего РНК) содержится 124 аминокислотных остатка и ее молекулярная масса составляет примерно 14 000. Миоглобин (белок мышц), состоящий из 153 аминокислотных остатков, имеет молекулярную массу 17 000, а гемоглобин – 64 500 (574 аминокислотных остатка). Молекулярные массы других белков более высокие: -глобулин (образует антитела) состоит из 1250 аминокислот и имеет молекулярную массу около 150 000, а молекулярная масса фермента глутаматдегидрогеназы превышает 1 000 000.

Определение молекулярной массы проводится различными методами: осмометрическим, гельфильтрационным, оптическим и др. однако наиболее точным является метод седиментации, предложенный Т. Сведбергом. Он основан на том, что при ультрацентрифугировании ускорением до 900 000 g скорость осаждения белков зависит от их молекулярной массы.

Важнейшим свойством белков является их способность проявлять как кислые так и основные, то есть выступать в роли амфотерных электролитов. Это обеспечивается за счет различных диссоциирующих группировок, входящих в состав радикалов аминокислот. Например, кислотные свойства белку придают карбоксильные группы аспарагиновой глутаминовой аминокислот, а щелочные – радикалы аргинина, лизина и гистидина. Чем больше дикарбоновых аминокислот содержится в белке, тем сильнее проявляются его кислотные свойства и наоборот.

Эти же группировки имеют и электрические заряды, формирующие общий заряд белковой молекулы. В белках, где преобладают аспарагиновая и глутаминовая аминокислоты, заряд белка будет отрицательным, избыток основных аминокислот придает положительный заряд белковой молекуле. Вследствие этого в электрическом поле белки будут передвигаться к катоду или аноду в зависимости от величины их общего заряда. Так, в щелочной среде (рН 7 – 14) белок отдает протон и заряжается отрицательно, тогда как в кислой среде (рН 1 – 7) подавляется диссоциация кислотных групп и белок становится катионом.

Таким образом, фактором, определяющим поведение белка как катиона или аниона, является реакция среды, которая определяется концентрацией водородных ионов и выражается величиной рН. Однако при определенных значениях рН число положительных и отрицательных зарядов уравнивается и молекула становится электронейтральной, т.е. она не будет перемещаться в электрическом поле. Такое значение рН среды определяется как изоэлектрическая точка белков. При этом белок находится в наименее устойчивом состоянии и при незначительных изменениях рН в кислую или щелочную сторону легко выпадает в осадок. Для большинства природных белков изоэлектрическая точка находится в слабокислой среде (рН 4,8 – 5,4), что свидетельствует о преобладании в их составе дикарбоновых аминокислот.

Свойство амфотерности лежит в основе буферных свойств белков и их участии в регуляции рН крови. Величина рН крови человека отличается постоянством и находится в пределах 7,36 – 7,4 , несмотря на различные вещества кислого или основного характера, регулярно поступающие с пищей или образующиеся в обменных процессах – следовательно существуют специальные механизмы регуляции кислотно-щелочного равновесия внутренней среды организма. К таким системам относится рассматриваемая в гл. “ Классификация” гемоглобиновая буферная система (стр.28). Изменение рН крови более чем на 0,07 свидетельствует о развитии патологического процесса. Сдвиг рН в кислую сторону называется ацидозом, а в щелочную – алкалозом.

Важное значение для организма имеет способность белков адсорбироватьь на своей поверхности некоторые вещества и ионы (гормоны, витамины, железо, медь), которые либо плохо растворимы в воде, либо являются токсичными (билирубин, свободные жирные кислоты). Белки транспортируют их по крови к местам дальнейших превращений или обезвреживания.

Водные растворы белков имеют свои особенности. Во-первых, белки обладают большим сродством к воде, т.е. они гидрофильны. Это значит, что молекулы белка, как заряженные частицы, притягивают к себе диполи воды, которые располагаются вокруг белковой молекулы и образуют водную или гидратную оболочку. Эта оболочка предохраняет молекулы белка от склеивания и выпадения в осадок. Величина гидратной оболочки зависит от структуры белка. Например, альбумины более легко связываются с молекулами воды и имеют относительно большую водную оболочку, тогда как глобулины, фибриноген присоединяют воду хуже, и гидратная оболочка и них меньше. Таким образом, устойчивость водного раствора белка определяется двумя факторами: наличием заряда белковой молекулы и находящейся вокруг нее водной оболочки. При удалении этих факторов белок выпадает в осадок. Данный процесс может быть обратимым и необратимым.

Обратимое осаждение белков (высаливание) предполагает выпадение белка в осадок под действием определенных веществ, после удаления которых он вновь возвращается в свое исходное (нативное) состояние. Для высаливания белков используют соли щелочных и щелочноземельных металлов (наиболее часто в практике используют сульфат натрия и аммония). Эти соли удаляют водную оболочку (вызывают обезвоживание) и снимают заряд. Между величиной водной оболочки белковых молекул и концентрацией солей существует прямая зависимость: чем меньше гидратная оболочка, тем меньше требуется солей. Так, глобулины, имеющие крупные и тяжелые молекулы и небольшую водную оболочку, выпадают в осадок при неполном насыщении раствора солями, а альбумины как более мелкие молекулы, окруженные большой водной оболочкой, – при полном насыщении.

Нативная молекула белка

Денатурированная молекула белка. Черточки обозначают связи в молекуле нативного белка, разрывающиеся при денатурации



еобратимое осаждение связано с глубокими внутримолекулярными изменениями структуры белка, что приводит в потере ими нативных свойств (растворимости, биологической активности и др.). Такой белок называется денатурированным, а процесс денатурацией . Денатурация белков происходит в желудке, где имеется сильнокислая среда (рН 0,5 – 1,5), и это способствует расщеплению белков протеолитическими ферментами. Денатурация белков положена в основу лечения отравления тяжелыми металлами, когда больному вводят per os (“через рот”) молоко или сырые яйца с тем, чтобы металлы денатурируя белки молока или яиц.

Адсорбировались на их поверхности и не действовали на белки слизистой оболочки желудка и кишечника, а также не всасывались в кровь.

Размер белковых молекул лежит в пределах 1 мкм до 1 нм и, следовательно, они являются коллоидными частицами, которые в воде образуют коллоидные растворы. Эти растворы характеризуются высокой вязкостью, способностью рассеивать лучи видимого света, не проходят сквозь полупроницаемые мембраны.

Вязкость раствора зависит от молекулярной массы и концентрации растворенного вещества. Чем выше молекулярная масса, тем раствор более вязкий. Белки как высокомолекулярные соединения образуют вязкие растворы. Например, раствор яичного белка в воде.

Вода



оллоидные частицы не проходят через полупроницаемые мембраны (целлофан, коллоидную пленку), так как их поры меньше коллоидных частиц. Непроницаемыми для белка являются все биологические мембраны. Это свойство белковых растворов широко используется в медицине и химии для очистки белковых препаратов от посторонних примесей. Такой процесс разделения называется диализом. Явление диализа лежит в основе действия аппарата “искусственная почка”, который широко используется в медицине для лечения острой почечной недостаточности.

Диализ (белые крупные кружки – молекулы белка, черные – молекулы хлористого натрия)

Минеральные вещества молока

В золе молока содержатся такие минеральные вещества, как кальций, фосфор, магний, калий, натрий, хлор, сера, кремний. Количество отдельных элементов в молоке определяется в основном генетическими факторами. Кормление и другие факторы окружающей среды оказывают на их содержание лишь незначительное влияние. Количество минеральных веществ в молоке остается постоянным даже тогда, когда в рационах отдельных элементов мало. При недостаточном поступлении минеральных веществ с кормом мобилизуются резервы организма и таким образом концентрация их в молоке поддерживается на определенном уровне. При значительном недостатке одного или нескольких элементов содержание минеральных веществ в расчете на единицу объема молока остается более или менее постоянным. Однако молочная продуктивность, а затем и общее количество минеральных веществ в молоке снижается.

Минеральные вещества

Содержится,г

Минеральные вещества

Общее количество микроэлементов в молоке составляет менее 0,15%.Содержание микроэлементов в молоке находится в тесной зависимости от наличия их в кормах.

    Структурно-механические свойства масла.

    По Ребиндеру существуют два основных типа структур.

    Первый тип – коагуляционная структура – это пространственные сетки, возникающие путем беспорядочного сцепления мельчайших частиц дисперсной фазы или микромолекул через тонкие расслойки данной среды.

    Второй тип – это кристаллизационно-конденсационная структура , образующаяся в результате непосредственного срастания кристалликов с образованием при этом поликристаллического твердого тела.

    Жировые основы маргарина относятся к коагуляционному типу структур. Консистенция и пластические свойства жировых основ маргарина в основном определяются соотношением твердой и жидкой фаз в том или ином пищевом жире. Это соотношение твердой и жидкой фаз характерно для каких-то определенных условий кристаллизации (температура, время, перемешивание). При этом важное значение имеет состав непрерывной среды и дисперсной фазы и характер размещения дисперсной фазы в непрерывной жидкой среде.

    Для некоторых видов пищевого жира при определенной температуре и условиях кристаллизации количество твердой дисперсной фазы может выйти за предел оптимального соотношения фаз, и тогда на поверхности кристаллов образуются столь тонкие пленки непрерывной жидкой среды, что они не могут мешать массовому хаотическому сращиванию кристаллов друг с другом. В этом случае мы всегда будем иметь наибольшую твердость жировой основы, крошливую консистенцию и наихудшие пластические свойства.

    Если при комнатной температуре пленки жидкой непрерывной среды являются оптимальными по толщине, т.е. такими, которые не создают условий для сращивания кристаллов при хранении, при механическом или термическом воздействии на систему, то в этом идеальном случае мы всегда будем получать упрочненные коагуляционные структуры, которые и определяют наилучшие пластические свойства жировых основ.

    Чтобы получать упрочненные коагуляционные структуры, обладающие наилучшими пластическими свойствами, за рубежом часто вводят в рецептуру жировой основы два вида саломаса с температурой плавления 32°С и 42°С. При этом вводится довольно значительное количество жидких растительных масел. Указанное, с одной стороны, создает в жировой основе наилучшие соотношения твердой и жидкой фаз, обеспечивая консистенцию, сходную со сливочным маслом, а с другой стороны, создает условия для постоянства консистенции маргарина в довольно большом интервале температур. Наряду с этим, введение в жировую основу высокоплавких саломасов находится в противоречии с требованиями физиологов к составу пищевых жиров.

    Прежде всего, следует отметить, что только наличие высокоэффективных эмульгаторов-стабилизаторов позволило создать современную технологию в производстве маргарина и обеспечить выработку пищевого жирового продукта высокого качества. Поверхностно-активные добавки обеспечивают получение тонкодисперсной эмульсии в прочную связь частиц дисперсной фазы с непрерывной средой (твердым при комнатной температуре жиром). Основной вопрос в производстве маргарина – это влияние поверхностно-активных добавок на структурно-механические свойства маргарина, и в частности на способность к солюбилизации.

    Адсорбционный слой эмульгатора повышает устойчивость эмульсии, в особенности в тех случаях, когда этот слой структурируется, образуя пленку поверхностного геля с сильно повышенной вязкостью и прочностью.

    Эти свойства имеют особое значение для производства маргарина, поскольку готовый продукт представляет собой эмульсию мельчайших частиц жидкой фазы, равномерно размещенных в непрерывной среде твердой фазы при комнатной температуре.

    С проблемой прочности эмульсий тесно связан вопрос о типе образующихся с данным эмульгатором эмульсий. Существует возможность образования двух типов. Значение соотношения объемов фаз для определенного типа образующейся эмульсии объясняется тем, что коалесценция и расслоение эмульсии данного типа происходят тем интенсивнее, чем меньше объем дисперсионной среды и чем больше – дисперсной фазы. Если эмульгатор обеспечивает устойчивую эмульсию только одного типа, то соотношение объемов перестает иметь решающее значение в определении типа эмульсии. Инверсия зависит не только от соотношения объемов фаз, но и от концентрации и химической природы эмульгатора.

Эмульгаторы должны обладать следующими свойствами:

Уменьшать поверхностное натяжение;
- достаточно быстро адсорбироваться на поверхности раздела фаз, препятствуя слиянию капель;
- иметь специфическую молекулярную структуру с полярными и неполярными группами;
- влиять на вязкость эмульсии.

Эффективность действия эмульгатора является специфическим свойством, зависящим от его природы, типа эмульгируемых веществ, температуры, рН среды, концентрации, времени эмульгирования и т.д.

Эффективность действия и природа эмульгатора определяют тип эмульсии.

Гидрофильные эмульгаторы, лучше растворимые в воде, чем в углеводородах, способствуют образованию эмульсий типа масло – вода, а гидрофобные, лучше растворимые в углеводородах, – эмульсий типа вода – масло. Соотношение размеров полярной и неполярной частей молекул эмульгатора характеризуется специальным показателем – гидрофильно-липофильный баланс. Если ГЛБ эмульгатора составляет 3-6, образуется эмульсия вода – масло, при значении ГЛБ 8-13 образуется преимущественно эмульсия типа масло – вода.

Маргарин представляет собой переохлажденную эмульсию типа вода в масле. При этом не исключена возможность образования эмульсии смешанного типа с преобладанием эмульсии вода – масло.

Основные функции эмульгаторов:

Создание устойчивой высокодисперсной эмульсии;
- стабилизация и предотвращение отделения влаги и жира в готовом продукте;
- обеспечение стабильности при хранении;
- обеспечение антиразбрызгивающей способности при жарке;
- обеспечение пластичности;
- обеспечение создания устойчивой формы кристаллической решетки в процессе структурообразования;
- обеспечение заданных функциональных свойств готового продукта в зависимости от области использования маргарина.

В Украине на протяжении многих лет использовались эмульгаторы, производимые в России, и собственного производства, вырабатываемые на полупромышленных производствах. К ним относятся эмульгаторы:

Т-1 – продукт глицеролиза говяжьего жира или саломаса;
- Т-2 – продукт полимеризации глицерина, этерифицированный стеариновой кислотой;
- Т-Ф – смесь эмульгатора Т-1 и пищевого фосфатидного концентрата в соотношении 2:1;
- ПМД – пищевые монодиглицериды;
- КЭ – комбинированный эмульгатор – смесь ПМД и фосфатидного концентрата в соотношении 3:1.

Широкая гамма эмульгаторов Нижегородского завода – различные виды дистиллированных моноглицеридов. В настоящее время в Нижнем Новгороде освоено производство серии новых эмульгаторов на основе лецитина. Это лецитины стандартные, лецитины фракционированные – фосфадитилхолин и фосфадитилсерин, а также гидролизованные лецитины.

В последние годы в Украине преимущественно используются эмульгаторы различных модификаций серии Dimodan, Palsgaard (на некоторых предприятиях Квест).

В разные периоды преимущество в спросе на эти два вида эмульгаторов переходило от одного к другому. Можно сказать, что здесь имеет место конкуренция качество – цена.

В зависимости от жирности маргарина и сферы его применения используют эмульгаторы Dimodan PVP (Dimodan HP), Dimodan ОТ (Dimodan S-T PEL/B), Dimodan СР. Для маргаринов жирностью ниже 40%, которые в настоящее время пользуются спросом у населения, используют дополнительно (кроме Dimodan ОТ, или Dimodan СР., или Dimodan LS) эфиры полиглицерина и рицинолевой кислоты – Grinsted PGPR90.

При производстве низкожирных маргаринов, особенно с содержанием жира 25% и ниже, используют стабилизирующие системы – гидроколлоиды (альгинаты, пектины и др.).

Следует отметить, что фирмы-производители дают рекомендации по применению различных видов эмульгаторов и стабилизирующих систем в зависимости от назначения маргаринов. Соблюдение этих рекомендаций позволяет получить продукцию высокого качества

Мышечные белки

Мясо птицы содержит примерно 20-23% белков. Мышечные белки по их растворимости можно разделить на три группы: миофибриллярные, саркоплазматические и белки стромы.

Миофибриллярные , или солерастворимые белки нерастворимы в воде, но большинство растворяется в растворах поваренной соли концентрацией более 1%. Эта группа состоит примерно из 20 отдельных белков, входящих в состав миофибрилл сократительной мышцы. Миофибриллярные белки могут быть разделены на три группы в зависимости от выполняемой функции: сократительные, которые ответственны за мышечные сокращения, регуляторные, участвующие в управлении процессом сокращения, и цитоскелетные, скрепляющие миофибриллы и способствующие сохранению их структурной целостности.

Сократительные белки миозин и актин оказывают большое влияние на функциональность мышечного белка. Поскольку в окоченевшей мышце актин и миозин находятся в виде актомиозинового комплекса, изменяется функциональность миозина как в эмульгированных, так и в формованных продуктах из мяса птицы. Свойства продуктов зависят также от общего соотношения актина и миозина и соотношения миозина и актина в свободном состоянии. Саркоплазматические белки и белки стромы, в свою очередь, влияют на функциональные свойства миофибриллярных белков.

Саркоплазматические белки растворимы в воде или в растворах с малой ионной силой (

Белки стромы , часто называемые белками соединительной ткани, служат каркасом, поддерживающим структуру мышцы. Основным белком стромы является коллаген. Эластин и ретикулин составляют небольшую часть стромы. Все эти белки нерастворимы в воде и солевых растворах. Нежность мяса, как правило, уменьшается с увеличением возраста животных благодаря образованию поперечных связей и другим изменениям коллагена.

Кровь и её фракции

Цельную кровь применяют как основное сырьё для производства колбас, зельцев, консервов и других продуктов питания, а также в качестве аддитива, придающего традиционный цвет изделиям при использовании в них белковых препаратов (0,6-1,0%); с этой же целью применяют препарат гемоглобина или смесь форменных элементов после гидратации в воде (1:1).

По сравнению с другими видами белоксодержащего сырья цельная кровь используется недостаточной широко вследствие наличия специфических цвета и вкуса, модифицирующих органолептические характеристики готовых изделий. В настоящее время ведутся исследования по осветлению крови, однако по ряду причин предложенные способы не нашли практического применения в промышленности. Функционально-технологические свойства крови и её фракций (плазмы, сыворотки) в первую очередь зависят от их белкового состава. Цельная кровь содержит около 150 протеинов с различными физико-химическими свойствами, преобладающими из которых являются белки форменных элементов, альбумины, глобулины и фибриноген. В связи с этим на базе цельной крови целесообразно готовить эмульсии, предназначенные для введения в рецептуры мясопродуктов и обеспечивающие повышение стабильности мясных систем, пищевой ценности и выхода, улучшение органолептических показателей и структурно-механических свойств.

В качестве белкового препарата наиболее целесообразно применять соевый изолят либо казеинат натрия.

Уровень введения эмульсий, приготовленных на основе цельной крови, в мясные системы может составлять до 30-40% к массе основного сырья.

Белки плазмы крови обладают уникальным комплексом ФТС. Альбумины легко взаимодействуют с другими белками, могут быть связаны с липидами и углеводами, имеют высокую водосвязывающую и пенообразующую способность.

Глобулины - хорошие эмульгаторы.

Фибриноген - имеет выраженную гелеобразующую способность, переходя в фибрин под воздействием ряда факторов (сдвиг рН к изоточке, введение ионов Са++ в плазму) и образуя пространственный каркас.

смесей Эти свойства фибриногена можно использовать при получении многокомпонентных белоксодержащих, включающих ПК, гелеподобных текстуратов, в процессе вторичного структурообразования мясных эмульсий при производстве вареных колбасных изделий.

Все белки плазмы характеризуются хорошей растворимостью, и как следствие - высокой водосвязывающей и эмульгирующей способностью, способны образовывать гели при нагревании. Введение поваренной соли оказывает отрицательное влияние на стабильность эмульсий на базе плазмы крови при рН 7,0. Важнейшим свойством плазмы является её способность к образованию гелей при тепловой обработке, причем их прочность и уровень водосвязывающей способности зависит от концентрации белков в системе, величины рН, присутствия солей, температуры и продолжительности нагрева.

Введение в плазму неплазменных белков (яичный альбумин, соевый изолят, казеинат натрия) существенно увеличивает как прочность гелей, так и их водо- и жиропоглощающую способность после термообработки.

В зависимости от состояния плазмы крови и условий первичной обработки, состав и функционально-технологические свойства её и, соответственно, область использования могут изменяться.

Систематизация имеющихся в настоящее время данных по переработке ПК позволяет оценить современные подходы к реализации биологического и функционально-технологического потенциала белкового компонента ПК при производстве пищевых продуктов.

Схема дает представление о состоянии, способах обработки, составе и свойствах белковых препаратов, получаемых на основе ПК, определяет области их практического использования, причем полифункциональность целевого назначения ПК отражена в формируемых при том или ином способе обработки ФТС.

Необходимо отметить, что уровень отдельных показателей ФТС, приведенных в Таблице 13 и служащих для расшифровки условных обозначений, принятых в схеме, является относительным в связи с тем, что фактическая величина каждой характеристики решающим образом зависит от концентрации белка, значения рН в системе, температуры среды, ионной силы и ряда других факторов.

Анализ классификационной схемы показывает, что одним из путей технологического использования плазмы крови является её применение в жидком стабилизированном виде (а также после охлаждения и замораживания) с относительно невысоким содержанием белка и сохраненными нативными ФТС.

В этом случае белки ПК характеризуются высоким уровнем ВСС и эмульгирования, что обусловлено наличием в ней водорастворимых белков, способных образовывать гели при нагреве. Совокупность этих свойств позволяет широко использовать плазму не только как компонент, балансирующий общий химический состав готовых изделий, но и как функциональную добавку при производстве эмульгированных мясопродуктов с высоким конечным влагосодержанием: вареных колбас, сосисок, сарделек, рубленых полуфабрикатов, фаршевых консервов, ветчинных изделий. Наиболее рациональным является введение в рецептуры 10% плазмы взамен 3% говядины или 2% свинины; введение 20% ПК вместо воды при куттеровании обеспечивает улучшение органолептических, структурно-механических показателей и повышение выхода готовой продукции на 0,3-0,5%. Прекрасный эффект дает применение плазмы крови в качестве среды для гидратации белковых препаратов (3-4 частей ПК на 1 часть белкового препарата).

Незаменима ПК при изготовлении белково-жировых эмульсий, связующих, многокомпонентных белковых систем с заданным составом и функционально-технологическими свойствами, структурированных белковых препаратов.

Концентрирование ПК методами сушки, ультрафильтрации и криоконцентрирования, позволяя существенно повысить содержание белка, приводит к некоторой модификации ФТС препарата.

Особенно существенное влияние на степень изменения ФТС оказывает сушка плазмы, в то время как сухой концентрат ПК, подвергнутый ультрафильтрации, имеет весьма высокие функциональные свойства.

Полученные данными методами концентраты успешно применяют при производстве мясопродуктов наряду с жидкой ПК.

Американские специалисты считают, что плазмой" крови крупного рогатого скота, благодаря её ФТС, можно успешно заменять яичный белок.

Денатурационно-коагуляционное осаждение, обеспечивая совмещение процессов термотропного структурирования, флокуляции (осаждения) и концентрирования белков ПК, дает возможность получать препараты с относительно высокой концентрацией белка и неординарными ФТС, что позволяет использовать их в рецептурах полукопченых, копченозапеченых, ливерных колбас, паштетных консервов и полуфабрикатов, имеющих ограниченное конечное влагосодержание и высокую жиропоглотительную способность. К этой группе препаратов относят: "осажденный белок плазмы", "белковые плазменные преципитаты", ливексы, "плазменный сыр", гранулированную ПК.

Применение данных видов препаратов плазмы крови в практике мясного производства весьма ограничено.

Структурирование плазмы крови путем рекальцинирования существенно расширяет возможности её технологического использования. Перевод ПК и многокомпонентных систем на её основе в гель-форму позволяет получать структурные матрицы, имитирующие природные биообъекты по внешнему виду, составу и свойствам, создает предпосылки к регулированию ФТС, обеспечивает вовлечение в процесс производства низкосортного сырья, дает возможность с новых позиций подойти к решению вопроса разработки новых видов пищевых продуктов. Особенно эффективно комплексное использование ПК и белковых препаратов (соевые изоляты, казеинат натрия и т. п.).Структурированные формы ПК применяют при производстве вареных колбас, рубленых полуфабрикатов, ветчины в оболочке, полукопченых и ливерных колбас, паштетов, фаршевых консервов, текстурированных наполнителей рецептур, аналогов мясопродуктов.

СОЗРЕВАНИЕ МЯСА

Вопрос «созревания мяса» до сего времени не получил окончательного освещения. Из наблюдений практиков известно, что после прекращения жизни животного в мясе происходят физико-химические изменения, характеризующиеся окоченением, затем расслаблением (размягчением) мышечных волокон. В результате мясо приобретает некоторый аромат и лучше поддается кулинарной обработке. Пищевые достоинства его повышаются. Эти изменения в мягких тканях туши получили название «созревание» («вызревание») или «ферментация мяса».

Для объяснения процесса созревания мяса заслуживает большого внимания учение Мейергофа, Эмбдена, Палладина и Абдергальдена о динамике и обмене углеводов в мышцах при жизни животного.

Мейергоф показал, что содержащийся в мышце гликоген расходуется на образование молочной кислоты при сокращении мышцы. Во время расслабления
(отдыха) мышцы, благодаря поступлению кислорода, из молочной кислоты снова синтезируется гликоген

Люндсград показал, что креатинофосфорная кислота находится в мышечных клетках и при сокращении их расщепляется на креатин и фосфорную кислоту (по
Палладину), которая соединяется с гексозой (глюкозой). Аденозинофосфорная кислота, содержащаяся в мышцах, также расщепляется с образованием аденозина и фосфорной кислоты, которая дри соединении с гексозой (глюкозой) способствует образованию молочной кислоты (Эмбден и Цимммерман).

Мясо только что убитого животного (парное мясо)- плотной консистенции, без выраженного приятного специфического запаха, при варке дает мутноватый неароматный бульон и не обладает высокими вкусовыми качествами. Более того, в первые часы после убоя животного мясо окоченевает и становится жестким.
Спустя 24-72 ч после убоя животного (в зависимости от температуры среды, аэрации и других факторов) мясо приобретает новые качественные показатели: исчезает его жесткость, оно приобретает сочность и специфический приятный запах, на поверхности туши образуется плотная пленка (корочка подсыхания), при варке дает прозрачный ароматный бульон, становится нежным и т. д.
Происходящие в мясе процессы и изменения, в результате которых оно приобретает желательные качественные показатели, принято называть созреванием мяса.

Созревание мяса представляет собой совокупность сложных биохимических процессов в мышечной ткани и изменений физико-коллоидной структуры белка, протекающих под действием его собственных ферментов.

Процессы, происходящие в мышечной ткани после убоя животного, можно условно подразделить на три следующие фазы: послеубойное окоченение, созревание и автолиз.

Послеубойное окоченение в туше развивается в первые часы после убоя животного При этом мышцы становятся упругими и слегка укорачиваются Это значительно увеличивает их жесткость и сопротивление на разрезе.
Способность такого мяса к набуханию очень низкая. При температуре 15-20"С полное окоченение происходит через 3-5 ч после убоя животного, а при температуре 0-2°С-через 18-20 ч.

Процесс послеубойного окоченения сопровождается некоторым повышением температуры в туше в результате выделения тепла, которое образуется от протекающих в тканях химических реакций. Окоченение мышечной ткани, наблюдающееся в первые часы и сутки после убоя животных, обусловлено образованием из белков актина и миозина нерастворимого актомиозинового комплекса. Предпосылкой его образования являются отсутствие аденозинтрифосфорной кислоты (АТФ), кислая среда мяса и накопление в нем молочной кислоты. Биохимические изменения в мясе создают эти предпосылки.
Уменьшение и полное исчезновение АТФ связано с ее распадом в результате ферментативного действия миозина Распад АТФ до аденозиндифосфорной (АДФ, аденозинмонофосфорной (АМФ) и фосфорной кислот сам по себе приводит к появлению кислой среды в мясе. Более того, уже в этой фазе начинается распад мышечного гликогена, что приводит к накоплению молочной кислоты, так же способствующей образованию в нем кислой среды.

Кислая среда, которая является закономерным явлением распада АТФ и началом необратимого процесса гликолиза (распада мышечного гликогена), усиливает мышечное окоченение. Замечено, что мышцы животных, погибших при явлениях судорог, окоченевают быстрее. Окоченение без накопления молочной кислоты характеризуется слабым мышечным напряжением и быстрым разрешением процесса.

Однако уже задолго до завершения фазы окоченения в мясе развиваются процессы, связанные с фазами его собственного созревания и аутолиза.
Ведущими для них являются два процесса - интенсивный распад мышечного гликогена, приводящий к резкому сдвигу величины рН мяса в кислую сторону, а также некоторые изменения химического состава и физико-коллоидной структуры белков.

В связи с тем что мышцы мяса кислорода не получают и окислительные процессы в них заторможены, в мясе накапливаются избытки молочной и фосфорной кислоты. Так, например, при мышечном утомлении организма (при его жизни) достигается максимум 0,25% молочной кислоты, а при посмертном окоченении ее накопляется до 0,82%. Активная реакция среды (рН) при этом изменяется от 7,26 до 6,02. От накопления молочной кислоты наступает быстрое сокращение (окоченение) мускулатуры, сопровождающееся коагуляцией белка (Саксль). При этом актомиозин теряет свою растворимость, белки стабилизируются, а кальций выпадает из коллоидов белка и переходит в раствор (мясной сок). Вследствие избыточного содержания молочной кислоты вначале наступает набухание коллоидоанизотропного вещества (темного диска) мышечных волокон (оно сопровождается укорочением- окоченением мышц); затем по мере увеличения концентрации молочной кислоты и коагуляции белка происходит размягчение этого вещества. Свернувшиеся белки теряют свои коллоидные свойства, становятся неспособными связывать (удерживать) воду и в известной степени лишаются своей дисперсной среды (воды): вместо первоначального разбухания наступает сморщивание (съеживание) коллоидов клеток, и мышцы становятся мягкими (разрешение окоченения).

В результате накопления молочной, фосфорной и других кислот в мясе увеличивается концентрация водородных ионов, вследствие чего к концу суток рН снижается до 5,8-5,7 (и даже ниже).

В кислой среде при распаде АТФ, АДФ, АМФ и фосфорной кислоты происходит частичное накопление неорганического фосфора. Резко кислая среда и наличие неорганического фосфора считается причиной диссоциации актомиозинового комплекса на актин и миозин. Распад этого комплекса снимает явления окоченения и жесткости мяса. Следовательно, фазу окоченения от других фаз обособить нельзя и ее необходимо считать одним из этапов процесса созревания мяса.

Схему биохимических изменений в процессе созревания мяса можно представить следующим образом.

Кислая среда сама по себе действует бактериостатически и даже бактерицидно, а поэтому при сдвиге рН в кислую сторону в мясе создаются неблагоприятные условия для развития микроорганизмов.

Наконец, кислая среда приводит к некоторым изменениям химического состава и физико-коллоидной структуры белков. Она изменяет проницаемость мышечных оболочек и степень дисперсности белков. Кислоты вступают во взаимодействие с протеинатами кальция и кальций отщепляют от белков.
Переход кальция в экстракт ведет к уменьшению дисперсности белков, в результате чего теряется часть гидратно связанной воды. Поэтому из созревшего мяса центрифугированием можно частично отделить мясной сок.

Высвободившаяся гидратносвязанная вода, воздействие про-теолитических ферментов и кислая среда создают условия разрыхления сарколеммы мышечных волокон, и в первую очередь разрыхления и набухания коллагена. Это в значительной степени способствует изменению консистенции мяса и более выраженной его сочности. Очевидно, с набуханием коллагена, а затем частичной отдачей влаги с поверхности туши в окружающую среду следует связывать образование на ее поверхности корочки подсыхания.

Фаза собственного созревания во многом определяет интенсивность течения физико-коллоидных процессов и микроструктурных изменений мышечных волокон, которые бывают в фазе автолиза. Автолиз при созревании мяса понижают в широком смысле слова и связывают его не только с распадом белков, но и с процессом распада любых составных частей клеток. В связи с этим процессы, происходящие в фазе собственного созревания, невозможно отделить или обособить от таковых при автолизе. Тем не менее в результате комплекса причин (действие протеолитических ферментов, резко кислая среда, продукты автолитического распада небелковых веществ и др.) происходит автолитический распад мышечных волокон на отдельные сегменты.

Созревание мяса совершается в течение 24-72 часов при температуре +4°.
Однако не всегда удастся выдерживать мясо при +4°. Иногда приходится хранить его в обычных условиях (не в остывочных) при температуре +6-8° и выше; при повышенной температуре процессы посмертного окоченения и разрешения мышц протекают быстрее. Скорость созревания мяса зависит также от вида и состояния здоровья убитого животного, его упитанности и возраста; но эти вопросы требуют дальнейшего наблюдения и изучения.

При созревании мяса происходит расщепление некоторых нуклеидов
(азотистых экстрактивных веществ). Образуются летучие вещества, эфиры и альдегиды, придающие аромат мясу. Появляются адениловая и инозиновая кислоты, аденин, ксантин, гипоксантин, от которых и зависят вкусовые качества мяса. Меняется реакция среды мяса в сторону кислотности (рН 6,2-
5,8). Это способствует набуханию коллоидов протоплазмы, благодаря чему мясо приобретает мягкость, нежность и хорошо поддается кулинарной обработке.
Мясо такого качества получается через 1-3 суток его хранения при температуре от 4 до 12° (в зависимости от возможностей предприятий).

На первом этапе этого процесса обнаруживается сегментация в отдельных мышечных волокнах при сохранении эндомизия волокон. При этом в сегментах сохраняется структура ядер, поперечная и продольная исчерченность.

На втором этапе сегментации подвергаются большинство мышечных волокон.
Как и на первом этапе, эндомизий волокон, а в сегментах структура ядер, поперечная и продольная исчерченность продолжают сохраняться. Наконец, на третьем этапе (фаза глубокого автолиза) обнаруживается распад сегментов на миофибриллы, а миофибрилл на саркомеры.

Саркомеры при микроскопии срезов, сделанных из такого Мяса, просматриваются в виде зернистой массы, заключенной в эндомизий.

Морфологические и микроструктурные изменения в тканях также являются причиной размягчения и разрыхления мяса в процессе его созревания, благодаря чему пищеварительные соки более свободно проникают к саркоплазме, что улучшает ее переваримость. Необходимо отметить, что соединительнотканные белки при созревании мяса почти не подвергаются протеолитическим процессам. Поэтому при равных условиях созревания нежность различных отрубов мяса одного и того же животного, а также одинаковых отрубов различных животных оказывается неодинаковой; нежность мяса, содержащего много соединительной ткани, невелика, а мясо молодых животных нежнее, чем старых.

В результате комплекса автолитических превращений различных компонентов мяса при его созревании образуются и накапливаются вещества, обусловливающие аромат и вкус созревшего мяса. Определенный вкус и аромат придают созревшему мясу азотсодержащие экстрактивные вещества - гипоксантин, креатин и креатинин, образующиеся при распаде АТФ, а также накапливающиеся свободные аминокислоты (глутаминовая кислота, аргинин, треонин, фенилаланин и др.). В образовании букета вкуса и аромата, по- видимому, участвуют пировиноградная и молочная кислоты.

И. А. Смородинцев высказывал предположение, что вкус и аромат зависят от накопления в созревшем мясе легкорастворимых и летучих веществ типа эфиров, альдегидов и кетонов. В дальнейшем в ряде исследований показано, что ароматические свойства созревшего мяса улучшаются по мере накопления в нем общего количества летучих редуцирующих веществ. В настоящее время при помощи газовой хроматографии и масс-спектрометрического анализа установлено, что к соединениям, обусловливающим запах вареного мяса, относятся ацетальдегид, ацетон, мртилэтилкетон, метанол, метилмеркаптан, диметилсульфид, этилмеркаптан и др.

При повышении температуры (до 30 °С), а также при длительной выдержке мяса (свыше 20-26 суток) в условиях низких плюсовых температур ферментативный процесс созревания заходит так глубоко, что в мясе заметно увеличивается количество продуктов распада белков в виде малых пептидов и свободных аминокислот. На этой стадии мясо приобретает коричневую окраску, в нем увеличивается количество аминного и аммиачного азота, происходит заметный гидролитический распад жиров, что резко снижает его товарные и пищевые качества.

Биохимические процессы, происходящие при созревании в мясе больных животных, отличаются от биохимических процессов в мясе здоровых животных.
При лихорадке и переутомлении энергетический процесс в организме повышен.
Окислительные процессы в тканях усилены. Изменение углеводного обмена при болезнях и переутомлении характеризуется быстрой убылью гликогена в мускулатуре. Поэтому почти при всяком патологическом процессе в организме животного содержание гликогена в мышцах сокращается. Поскольку гликогена в мясе больных животных меньше, чем в мясе здоровых, то и количество продуктов распада гликогена (глюкозы, молочной кислоты и др.) в мясе больных животных незначительное.

Кроме того, при тяжело протекающих заболеваниях еще при жизни животного в его мускулатуре накапливаются промежуточные и конечные продукты белкового метаболизма. В этих случаях уже в первые часы после убоя животного в мясе обнаруживается повышенное количество аминного и аммиачного азота.

Незначительное накопление кислот и повышенное содержание полипептидов, аминокислот и аммиака являются причиной меньшего снижения показателя концентрации водородных ионов при созревании мяса больных животных. Этот фактор влияет на активность ферментов мяса. В большинстве случаев концентрация водородных ионов, устанавливающаяся в результате созревания мяса больных животных, более благоприятна для действия пептидаз и протеаз.

В итоге накопление в мясе больных животных экстрактивных азотистых веществ и отсутствие резкого сдвига величины рН в кислую сторону считаются условиями, благоприятными для развития микроорганизмов.

Изменения, происходящие в мясе больных животных, по-иному влияют и на характер физико-коллоидной структуры мяса. Меньшая кислотность вызывает незначительное выпадение солей кальция, что, в свою очередь, является причиной меньшего изменения степени дисперсности белков и других изменений, характерных для них при нормальном созревании мяса. Сравнительно высокий показатель рН, накопление продуктов распада белков и благоприятные условия для развития микроорганизмов предопределяют меньшую стойкость мяса больных животных при хранении. Перечисленные признаки свойственны мясу каждого тяжелобольного животного; они являются причиной известной однотипности в изменении физико-химических показателей мяса, полученного от животных, убитых с течением патологического процесса, независимо от природы заболевания. Это положение не отрицает, специфических изменений в составе мяса при отдельных заболеваниях, но дает основание говорить об общих закономерностях созревания мяса при патологии в животном организме.

Соединениями, характеризующимися большой молекулярной массой. В состав всех известных белков ... постоянной свою форму и химический состав , несмотря на непрерывное их...

  • Химический состав и физические свойства спермы

    Доклад >> Медицина, здоровье

    Химический состав и физические свойства спермы Сперма – смесь... , А), макро и микроэлементы. Химический состав спермы: 1)вода- 75% 2) сухое вещество- 25%: -белки - 85% -Липиды...

  • Содержание статьи

    БЕЛКИ (статья 1) – класс биологических полимеров, присутствующих в каждом живом организме. С участием белков проходят основные процессы, обеспечивающие жизнедеятельность организма: дыхание, пищеварение, мышечное сокращение, передача нервных импульсов. Костная ткань, кожный, волосяной покров, роговые образования живых существ состоят из белков. Для большинства млекопитающих рост и развитие организма происходит за счет продуктов, содержащих белки в качестве пищевого компонента. Роль белков в организме и, соответственно, их строение весьма разнообразно.

    Состав белков.

    Все белки представляют собой полимеры, цепи которых собраны из фрагментов аминокислот. Аминокислоты – это органические соединения, содержащие в своем составе (в соответствии с названием) аминогруппу NH 2 и органическую кислотную, т.е. карбоксильную, группу СООН. Из всего многообразия существующих аминокислот (теоретически количество возможных аминокислот неограниченно) в образовании белков участвуют только такие, у которых между аминогруппой и карбоксильной группой – всего один углеродный атом. В общем виде аминокислоты, участвующие в образовании белков, могут быть представлены формулой: H 2 N–CH(R)–COOH. Группа R, присоединенная к атому углерода (тому, который находится между амино- и карбоксильной группой), определяет различие между аминокислотами, образующими белки. Эта группа может состоять только из атомов углерода и водорода, но чаще содержит помимо С и Н различные функциональные (способные к дальнейшим превращениям) группы, например, HO-, H 2 N- и др. Существует также вариант, когда R = Н.

    В организмах живых существ содержится более 100 различных аминокислот, однако, в строительстве белков используются не все, а только 20, так называемых «фундаментальных». В табл. 1 приведены их названия (большинство названий сложилось исторически), структурная формула, а также широко применяемое сокращенное обозначение. Все структурные формулы расположены в таблице таким образом, чтобы основной фрагмент аминокислоты находился справа.

    Таблица 1. АМИНОКИСЛОТЫ, УЧАСТВУЮЩИЕ В СОЗДАНИИ БЕЛКОВ
    Название Структура Обозначение
    ГЛИЦИН ГЛИ
    АЛАНИН АЛА
    ВАЛИН ВАЛ
    ЛЕЙЦИН ЛЕЙ
    ИЗОЛЕЙЦИН ИЛЕ
    СЕРИН СЕР
    ТРЕОНИН ТРЕ
    ЦИСТЕИН ЦИС
    МЕТИОНИН МЕТ
    ЛИЗИН ЛИЗ
    АРГИНИН АРГ
    АСПАРАГИНОВАЯ КИСЛОТА АСН
    АСПАРАГИН АСН
    ГЛУТАМИНОВАЯ КИСЛОТА ГЛУ
    ГЛУТАМИН ГЛН
    ФЕНИЛАЛАНИН ФЕН
    ТИРОЗИН ТИР
    ТРИПТОФАН ТРИ
    ГИСТИДИН ГИС
    ПРОЛИН ПРО
    В международной практике принято сокращенное обозначение перечисленных аминокислот с помощью латинских трехбуквенных или однобуквенных сокращений, например, глицин – Gly или G, аланин – Ala или A.

    Среди этих двадцати аминокислот (табл. 1) только пролин содержит рядом с карбоксильной группой СООН группу NH (вместо NH 2), так как она входит в состав циклического фрагмента.

    Восемь аминокислот (валин, лейцин, изолейцин, треонин, метионин, лизин, фенилаланин и триптофан), помещенные в таблице на сером фоне, называют незаменимыми, поскольку организм для нормального роста и развития должен постоянно получать их с белковой пищей.

    Белковая молекула образуется в результате последовательного соединения аминокислот, при этом карбоксильная группа одной кислоты взаимодействует с аминогруппой соседней молекулы, в результате образуется пептидная связь –CO–NH– и выделяется молекула воды. На рис. 1 показано последовательное соединение аланина, валина и глицина.

    Рис. 1 ПОСЛЕДОВАТЕЛЬНОЕ СОЕДИНЕНИЕ АМИНОКИСЛОТ при образовании белковой молекулы. В качестве основного направления полимерной цепи выбран путь от концевой аминогруппы H 2 N к концевой карбоксильной группе COOH.

    Чтобы компактно описать строение белковой молекулы, используют сокращенные обозначения аминокислот (табл. 1, третий столбец), участвующих в образовании полимерной цепи. Фрагмент молекулы, показанный на рис. 1, записывают следующим образом: H 2 N-АЛА-ВАЛ-ГЛИ-COOH.

    Белковые молекулы содержат от 50 до 1500 аминокислотных остатков (более короткие цепи называют полипептидами). Индивидуальность белка определяется набором аминокислот, из которых составлена полимерная цепь и, что не менее важно, порядком их чередования вдоль цепи. Например, молекула инсулина состоит из 51 аминокислотного остатка (это один из самых короткоцепных белков) и представляет собой две соединенных между собой параллельных цепи неодинаковой длины. Порядок чередования аминокислотных фрагментов показан на рис. 2.

    Рис. 2 МОЛЕКУЛА ИНСУЛИНА , построенная из 51 аминокислотного остатка, фрагменты одинаковых аминокислот отмечены соответствующей окраской фона. Содержащиеся в цепи остатки аминокислоты цистеина (сокращенное обозначение ЦИС) образуют дисульфидные мостики –S-S-, которые связывают две полимерных молекулы, либо образуют перемычки внутри одной цепи.

    Молекулы аминокислоты цистеина (табл. 1) содержат реакционно-способные сульфгидридные группы –SH, которые взаимодействуют между собой, образуя дисульфидные мостики –S-S-. Роль цистеина в мире белков особая, с его участием образуются поперечные сшивки между полимерными белковыми молекулами.

    Объединение аминокислот в полимерную цепь происходит в живом организме под управлением нуклеиновых кислот, именно они обеспечивают строгий порядок сборки и регулируют фиксированную длину полимерной молекулы (см . НУКЛЕИНОВЫЕ КИСЛОТЫ).

    Структура белков.

    Состав белковой молекулы, представленный в виде чередующихся остатков аминокислот (рис. 2), называют первичной структурой белка. Между присутствующими в полимерной цепи имино-группами HN и карбонильными группами CO возникают водородные связи (см . ВОДОРОДНАЯ СВЯЗЬ), в результате молекула белка приобретает определенную пространственную форму, называемую вторичной структурой. Наиболее распространены два типа вторичной структуры белков.

    Первый вариант, называемый α-спиралью, реализуется с помощью водородных связей внутри одной полимерной молекулы. Геометрические параметры молекулы, определяемые длинами связей и валентными углами, таковы, что образование водородных связей оказывается возможным для групп H-N и C=O, между которыми находятся два пептидных фрагмента H-N-C=O (рис. 3).

    Состав полипептидной цепи, показанной на рис. 3, записывают в сокращенном виде следующим образом:

    H 2 N-АЛА ВАЛ-АЛА-ЛЕЙ-АЛА-АЛА-АЛА-АЛА-ВАЛ-АЛА-АЛА-АЛА-COOH.

    В результате стягивающего действия водородных связей молекула приобретает форму спирали – так называемая α-спираль, ее изображают в виде изогнутой спиралевидной ленты, проходящей через атомы, образующие полимерную цепь (рис. 4)

    Рис. 4 ОБЪЕМНАЯ МОДЕЛЬ МОЛЕКУЛЫ БЕЛКА в форме α-спирали. Водородные связи показаны зелеными пунктирными линиями. Цилиндрическая форма спирали видна при определенном угле поворота (атомы водорода на рисунке не показаны). Окраска отдельных атомов дана в соответствии с международными правилами, которые рекомендуют для атомов углерода черный цвет, для азота – синий, для кислорода – красный, для серы – желтый цвет (для не показанных на рисунке атомов водорода рекомендован белый цвет, в этом случае всю структуру изображают на темном фоне).

    Другой вариант вторичной структуры, называемый β-структурой, образуется также при участии водородных связей, отличие состоит в том, что взаимодействуют группы H-N и C=O двух или более полимерных цепей, расположенных параллельно. Поскольку полипептидная цепь имеет направление (рис. 1), возможны варианты, когда направление цепей совпадает (параллельная β-структура, рис. 5), либо они противоположны (антипараллельная β-структура, рис. 6).

    В образовании β-структуры могут участвовать полимерные цепи различного состава, при этом органические группы, обрамляющие полимерную цепь (Ph, CH 2 ОН и др.), в большинстве случаев играют второстепенную роль, решающее значение имеет взаиморасположение групп H-N и C=O. Поскольку относительно полимерной цепи H-N и C=O группы направлены в различные стороны (на рисунке – вверх и вниз), становится возможным одновременное взаимодействие трех и более цепей.

    Состав первой полипептидной цепи на рис. 5:

    H 2 N-ЛЕЙ-АЛА-ФЕН-ГЛИ-АЛА-АЛА-COOH

    Состав второй и третей цепи:

    H 2 N-ГЛИ-АЛА-СЕР-ГЛИ-ТРЕ-АЛА-COOH

    Состав полипептидных цепей, показанных на рис. 6, тот же, что и на рис. 5, отличие в том, что вторая цепь имеет противоположное (в сравнении с рис. 5) направление.

    Возможно образование β-структуры внутри одной молекулы, когда фрагмент цепи на определенном участке оказывается повернутым на 180°, в этом случае две ветви одной молекулы имеют противоположное направление, в результате образуется антипараллельная β-структура (рис. 7).

    Структура, показанная на рис. 7 в плоском изображении, представлена на рис. 8 в виде объемной модели. Участки β-структуры принято упрощенно обозначать плоской волнистой лентой, которая проходит через атомы, образующие полимерную цепь.

    В структуре многих белков чередуются участки α-спирали и лентообразные β-структуры, а также одиночные полипептидные цепи. Их взаиморасположение и чередование в полимерной цепи называют третичной структурой белка.

    Способы изображения структуры белков показаны далее на примере растительного белка крамбина. Структурные формулы белков, содержащих часто до сотни аминокислотных фрагментов, сложны, громоздки и трудны для восприятия, поэтому иногда используют упрощенные структурные формулы – без символов химических элементов (рис. 9, вариант А), но при этом сохраняют окраску валентных штрихов в соответствии с международными правилами (рис. 4). Формулу при этом представляют не в плоском, а в пространственном изображении, что соответствует реальной структуре молекулы. Такой способ позволяет, например, различить дисульфидные мостики (подобные тем, которые есть в инсулине, рис. 2), фенильные группы в боковом обрамлении цепи и др. Изображение молекул в виде объемных моделей (шарики, соединенные стержнями) несколько более наглядно (рис. 9, вариант Б). Однако оба способа не позволяют показать третичную структуру, поэтому американский биофизик Джейн Ричардсон предложил изображать α-структуры в виде спирально закрученных лент (см. рис. 4), β-структуры – в виде плоских волнистых лент (рис. 8), а соединяющие их одиночные цепи – в форме тонких жгутов, каждый тип структуры имеет свою окраску. Сейчас широко применяют такой способ изображения третичной структуры белка (рис. 9, вариант В). Иногда для большей информативности показывают совместно третичную структуру и упрощенную структурную формулу (рис. 9, вариант Г). Есть и модификации способа, предложенного Ричардсоном: α-спирали изображают в виде цилиндров, а β-структуры – в форме плоских стрелок, указывающих и направление цепи (рис. 9, вариант Д). Менее распространен способ, при котором всю молекулу изображают в виде жгута, где неодинаковые структуры выделяют различающейся окраской, а дисульфидные мостики показывают в виде желтых перемычек (рис. 9, вариант Д).

    Наиболее удобен для восприятия вариант В, когда при изображении третичной структуры особенности строения белка (аминокислотные фрагменты, порядок их чередования, водородные связи) не указывают, при этом исходят из того, что все белки содержат «детали», взятые из стандартного набора двадцати аминокислот (табл. 1). Основная задача при изображении третичной структуры – показать пространственное расположение и чередование вторичных структур.

    Рис. 9 РАЗЛИЧНЫЕ ВАРИАНТЫ ИЗОБРАЖЕНИЯ СТРУКТУРЫ БЕЛКА КРАМБИНА .
    А– структурная формула в пространственном изображении.
    Б – структура в виде объемной модели.
    В – третичная структура молекулы.
    Г – сочетание вариантов А и В.
    Д – упрощенное изображение третичной структуры.
    Е – третичная структура с дисульфидными мостиками.

    Наиболее удобна для восприятия объемная третичная структура (вариант В), освобожденная от деталей структурной формулы.

    Белковая молекула, обладающая третичной структурой, как правило, принимает определенную конфигурацию, которую формируют полярные (электростатические) взаимодействия и водородные связи. В результате молекула приобретает форму компактного клубка – глобулярные белки (globules, лат . шарик), либо нитевидную – фибриллярные белки (fibra, лат . волокно).

    Пример глобулярной структуры – белок альбумин, к классу альбуминов относят белок куриного яйца. Полимерная цепь альбумина собрана, основном, из аланина, аспаргиновой кислоты, глицина, и цистеина, чередующихся в определенном порядке. Третичная структура содержит α-спирали, соединенные одиночными цепями (рис. 10).

    Рис. 10 ГЛОБУЛЯРНАЯ СТРУКТУРА АЛЬБУМИНА

    Пример фибриллярной структуры – белок фиброин. Он содержат большое количество остатков глицина, аланина и серина (каждый второй аминокислотный остаток – глицин); остатки цистеина, содержащего сульфгидридные группы, отсутствуют. Фиброин – основной компонент натурального шелка и паутины, содержит β-структуры, соединенные одиночными цепями (рис. 11).

    Рис. 11 ФИБРИЛЛЯРНЫЙ БЕЛОК ФИБРОИН

    Возможность образования третичной структуры определенного типа заложена в первичной структуре белка, т.е. определена заранее порядком чередования аминокислотных остатков. Из определенных наборов таких остатков преимущественно возникают α-спирали (подобных наборов существует достаточно много), другой набор приводит к появлению β-структур, одиночные цепи характеризуются своим составом.

    Некоторые белковые молекулы, сохраняя третичную структуру, способны объединяться в крупные надмолекулярные агрегаты, при этом их удерживают вместе полярные взаимодействия, а также водородные связи. Такие образования называют четвертичной структурой белка. Например, белок ферритин, состоящий в основной массе из лейцина, глутаминовой кислоты, аспарагиновой кислоты и гиститдина (в феррицине есть в различном количестве все 20 аминокислотных остатков) образует третичную структуру из четырех параллельно уложенных α-спиралей. При объединении молекул в единый ансамбль (рис. 12) образуется четвертичная структура, в которую может входить до 24 молекул ферритина.

    Рис.12 ОБРАЗОВАНИЕ ЧЕТВЕРТИЧНОЙ СТРУКТУРЫ ГЛОБУЛЯРНОГО БЕЛКА ФЕРРИТИНА

    Другой пример надмолекулярных образований – структура коллагена. Это фибриллярный белок, цепи которого построены в основном из глицина, чередующегося с пролином и лизином. Структура содержит одиночные цепи, тройные α-спирали, чередующиеся с лентообразными β-структурами, уложенными в виде параллельных пучков (рис. 13).

    Рис.13 НАДМОЛЕКУЛЯРНАЯ СТРУКТУРА ФИБРИЛЛЯРНОГО БЕЛКА КОЛЛАГЕНА

    Химические свойства белков.

    При действии органических растворителей, продуктов жизнедеятельности некоторых бактерий (молочнокислое брожение) или при повышении температуры происходит разрушение вторичных и третичных структур без повреждения его первичной структуры, в результате белок теряет растворимость и утрачивает биологическую активность, этот процесс называют денатурацией, то есть потерей натуральных свойств, например, створаживание кислого молока, свернувшийся белок вареного куриного яйца. При повышенной температуре белки живых организмов (в частности, микроорганизмов) быстро денатурируют. Такие белки не способны участвовать в биологических процессах, в результате микроорганизмы погибают, поэтому кипяченое (или пастеризованное) молоко может дольше сохраняться.

    Пептидные связи H-N-C=O, образующие полимерную цепь белковой молекулы, в присутствии кислот или щелочей гидролизуются, при этом происходит разрыв полимерной цепи, что, в конечном итоге, может привести к исходным аминокислотам. Пептидные связи, входящие в состав α-спиралей или β-структур, более устойчивы к гидролизу и различным химическим воздействиям (по сравнению с теми же связями в одиночных цепях). Более деликатную разборку белковой молекулы на составляющие аминокислоты проводят в безводной среде с помощью гидразина H 2 N–NH 2 , при этом все аминокислотные фрагменты, кроме последнего, образуют так называемые гидразиды карбоновых кислот, содержащие фрагмент C(O)–HN–NH 2 (рис. 14).

    Рис. 14. РАСЩЕПЛЕНИЕ ПОЛИПЕПТИДА

    Подобный анализ может дать информацию об аминокислотном составе того или иного белка, однако важнее знать их последовательность в белковой молекуле. Одна из широко применяемых для этой цели методик – действие на полипептидную цепь фенилизотиоцианата (ФИТЦ), который в щелочной среде присоединяется к полипептиду (с того конца, который содержит аминогруппу), а при изменении реакции среды на кислую, отсоединяется от цепи, унося с собой фрагмент одной аминокислоты (рис. 15).

    Рис. 15 ПОСЛЕДОВАТЕЛЬНОЕ РАСЩЕПЛЕНИЕ ПОЛИПЕПТИДА

    Разработано много специальных методик для подобного анализа, в том числе и такие, которые начинают «разбирать» белковую молекулу на составляющие компоненты, начиная с карбоксильного конца.

    Поперечные дисульфидные мостики S-S (образовавшиеся при взаимодействии остатков цистеина, рис. 2 и 9) расщепляют, превращая их в HS-группы действием различных восстановителей. Действие окислителей (кислорода или перекиси водорода) приводит вновь к образованию дисульфидных мостиков (рис. 16).

    Рис. 16. РАСЩЕПЛЕНИЕ ДИСУЛЬФИДНЫХ МОСТИКОВ

    Для создания дополнительных поперечных сшивок в белках используют реакционную способность амино- и карбоксильных групп. Более доступны для различных взаимодействий аминогруппы, которые находятся в боковом обрамлении цепи – фрагменты лизина, аспарагина, лизина, пролина (табл. 1). При взаимодействии таких аминогрупп с формальдегидом идет процесс конденсации и возникают поперечные мостики –NH–CH2–NH– (рис. 17).

    Рис. 17 СОЗДАНИЕ ДОПОЛНИТЕЛЬНЫХ ПОПЕРЕЧНЫХ МОСТИКОВ МЕЖДУ МОЛЕКУЛАМИ БЕЛКА .

    Концевые карбоксильные группы белка способны реагировать с комплексными соединениями некоторых поливалентных металлов (чаще применяют соединения хрома), при этом также возникают поперечные сшивки. Оба процесса используются при дублении кожи.

    Роль белков в организме.

    Роль белков в организме разнообразна.

    Ферменты (fermentatio лат . – брожение), другое их название – энзимы (en zumh греч . – в дрожжах) – это белки, обладающие каталитической активностью, они способны увеличивать скорости биохимических процессов в тысячи раз. Под действием ферментов составные компоненты пищи: белки, жиры и углеводы – расщепляются до более простых соединений, из которых затем синтезируются новые макромолекулы, необходимые организму определенного типа. Ферменты принимают участие и во многих биохимических процессах синтеза, например, в синтезе белков (одни белки помогают синтезировать другие). См . ФЕРМЕНТЫ

    Ферменты не только высокоэффективные катализаторы, но и селективные (направляют реакцию строго в заданном направлении). В их присутствии реакция проходит практически со 100%-ным выходом без образования побочных продуктов и при этом условия протекания – мягкие: обычное атмосферное давление и температура живого организма. Для сравнения, синтез аммиака из водорода и азота в присутствии катализатора – активированного железа – проводят при 400–500° С и давлении 30 МПа, выход аммиака 15–25% за один цикл. Ферменты считаются непревзойденными катализаторами.

    Интенсивное исследование ферментов началось в середине 19 в., сейчас изучено более 2000 различных ферментов, это самый многообразный класс белков.

    Названия ферментов составляют следующим образом: к наименованию реагента, с которым взаимодействует фермент, или к названию катализируемой реакции добавляют окончание -аза, например, аргиназа разлагает аргинин (табл. 1), декарбоксилаза катализирует декарбоксилирование, т.е. отщепление СО 2 от карбоксильной группы:

    – СООН → – СН + СО 2

    Часто, для более точного обозначения роли фермента в его названии указывают и объект, и тип реакции, например, алкогольдегидрогеназа – фермент, осуществляющий дегидрирование спиртов.

    Для некоторых ферментов, открытых достаточно давно, сохранилось историческое название (без окончания –аза), например, пепсин (pepsis, греч . пищеварение) и трипсин (thrypsis греч . разжижение), эти ферменты расщепляют белки.

    Для систематизации ферменты объединяют в крупные классы, в основу классификации положен тип реакции, классы именуют по общему принципу – название реакции и окончание – аза. Далее перечислены некоторые из таких классов.

    Оксидоредуктазы – ферменты, катализирующие окислительно-восстановительные реакции. Входящие в этот класс дегидрогеназы осуществляют перенос протона, например алкогольдегидрогеназа (АДГ) окисляет спирты до альдегидов, последующее окисление альдегидов до карбоновых кислот катализируют альдегиддегидрогеназы (АЛДГ). Оба процесса происходят в организме при переработке этанола в уксусную кислоту (рис. 18).

    Рис. 18 ДВУХСТАДИЙНОЕ ОКИСЛЕНИЕ ЭТАНОЛА до уксусной кислоты

    Наркотическим действием обладает не этанол, а промежуточный продукт ацетальдегид, чем ниже активность фермента АЛДГ, тем медленнее проходит вторая стадия – окисление ацетальдегида до уксусной кислоты и тем дольше и сильнее проявляется опьяняющее действие от приема внутрь этанола. Анализ показал, что более чем у 80% представителей желтой расы относительно низкая активность АЛДГ и потому заметно более тяжелая переносимость алкоголя. Причина такой врожденной пониженной активности АЛДГ состоит в том, что часть остатков глутаминовой кислоты в молекуле «ослабленной» АЛДГ заменена фрагментами лизина (табл. 1).

    Трансферазы – ферменты, катализирующие перенос функциональных групп, например, трансиминаза катализирует перемещение аминогруппы.

    Гидролазы – ферменты, катализирующие гидролиз. Упомянутые ранее трипсин и пепсин осуществляют гидролиз пептидных связей, а липазы расщепляют сложноэфирную связь в жирах:

    –RС(О)ОR 1 +Н 2 О → –RС(О)ОН + НОR 1

    Лиазы – ферменты, катализирующие реакции, которые проходят не гидролитическим путем, в результате таких реакций происходит разрыв связей С-С, С-О, С-N и образование новых связей. Фермент декарбоксилаза относится к этому классу

    Изомеразы – ферменты, катализирующие изомеризацию, например, превращение малеиновой кислоты в фумаровую (рис. 19), это пример цис – транс изомеризации (см. ИЗОМЕРИЯ).

    Рис. 19. ИЗОМЕРИЗАЦИЯ МАЛЕИНОВОЙ КИСЛОТЫ в фумаровую в присутствии фермента.

    В работе ферментов соблюдается общий принцип, в соответствии с которым всегда есть структурное соответствие фермента и реагента ускоряемой реакции. По образному выражению одного из основателей учения о ферментах Э.Фишера , реагент подходит к ферменту, как ключ к замку. В связи с этим каждый фермент катализирует определенную химическую реакцию или группу реакций одного типа. Иногда фермент может действовать на одно единственное соединение, например, уреаза (uron греч . – моча) катализирует только гидролиз мочевины:

    (H 2 N) 2 C = O + H 2 O = CO 2 + 2NH 3

    Наиболее тонкую избирательность проявляют ферменты, различающие оптически активные антиподы – лево- и правовращающие изомеры. L-аргиназа действует только на левовращающий аргинин и не затрагивает правовращающий изомер. L-лактатдегидрогеназа действует только на левовращающие эфиры молочной кислоты, так называемые лактаты (lactis лат . молоко), в то время как D-лактатдегидрогеназа расщепляет исключительно D-лактаты.

    Большая часть ферментов действует не на одно, а на группу родственных соединений, например, трипсин «предпочитает» расщеплять пептидные связи образованные лизином и аргинином (табл. 1.)

    Каталитические свойства некоторых ферментов, таких как гидролазы, определяются исключительно строением самой белковой молекулы, другой класс ферментов – оксидоредуктазы (например, алкогольдегидрогеназа) могут проявлять активность только в присутствии связанных с ними небелковых молекул – витаминов, активирующих ионов Mg, Са, Zn, Мn и фрагментов нуклеиновых кислот (рис. 20).

    Рис. 20 МОЛЕКУЛА АЛКОГОЛЬДЕГИДРОГЕНАЗЫ

    Транспортные белки связывают и переносят различные молекулы или ионы через мембраны клеток (как внутрь клетки, так и вовне), а также от одного органа к другому.

    Например, гемоглобин связывает кислород при прохождении крови через легкие и доставляет его к различным тканям организма, где кислород высвобождается и затем используется для окисления компонентов пищи, этот процесс служит источником энергии (иногда употребляют термин «сжигание» пищевых продуктов в организме).

    Помимо белковой части гемоглобин содержит комплексное соединение железа с циклической молекулой порфирином (porphyros греч . – пурпур), что и обусловливает красный цвет крови. Именно этот комплекс (рис. 21, слева) играет роль переносчика кислорода. В гемоглобине порфириновый комплекс железа располагается внутри белковой молекулы и удерживается с помощью полярных взаимодействий, а также координационной связи с азотом в гистидине (табл. 1), входящем в состав белка. Молекула О2, которую переносит гемоглобин, присоединяется с помощью координационной связи к атому железа со стороны, противоположной той, к которой присоединен гистидин (рис. 21, справа).

    Рис. 21 СТРОЕНИЕ КОМПЛЕКСА ЖЕЛЕЗА

    Справа показано строение комплекса в форме объемной модели. Комплекс удерживается в белковой молекуле с помощью координационной связи (синий пунктир) между атомом Fe и атомом N в гистидине, входящим в состав белка. Молекула О 2 , которую переносит гемоглобин, присоединена координационно (красный пунктир) к атому Fe с противоположной страны плоского комплекса.

    Гемоглобин – один из наиболее подробно изученных белков, он состоит из a-спиралей, соединенных одиночными цепями, и содержит в своем составе четыре комплекса железа. Таким образом, гемоглобин представляет собой как бы объемистую упаковку для переноса сразу четырех молекул кислорода. По форме гемоглобин соответствует глобулярным белкам (рис. 22).

    Рис. 22 ГЛОБУЛЯРНАЯ ФОРМА ГЕМОГЛОБИНА

    Основное «достоинство» гемоглобина состоит в том, что присоединение кислорода и последующее его отщепление при передаче различным тканям и органам проходит быстро. Монооксид углерода, СО (угарный газ), связывается с Fe в гемоглобине еще быстрее, но, в отличие от О 2 , образует трудно разрушающийся комплекс. В результате такой гемоглобин не способен связывать О 2 , что приводит (при вдыхании больших количеств угарного газа) к гибели организма от удушья.

    Вторая функция гемоглобина – перенос выдыхаемого СО 2 , но в процессе временного связывания углекислоты участвует не атом железа, а H 2 N-группы белка.

    «Работоспособность» белков зависит от их строения, например, замена единственного аминокислотного остатка глутаминовой кислоты в полипептидной цепи гемоглобина на остаток валина (изредка наблюдаемая врожденная аномалия) приводит к заболеванию, называемому серповидноклеточная анемия .

    Существуют также транспортные белки, способные связывать жиры, глюкозу, аминокислоты и переносить их как внутрь, так и вовне клеток.

    Транспортные белки особого типа не переносят сами вещества, а выполняют функции «транспортного регулировщика», пропуская определенные вещества сквозь мембрану (внешнюю стенку клетки). Такие белки чаще называют мембранными. Они имеют форму пустотелого цилиндра и, встраиваясь в стенку мембраны, обеспечивают перемещение некоторых полярных молекул или ионов внутрь клетки. Пример мембранного белка – порин (рис. 23).

    Рис. 23 БЕЛОК ПОРИН

    Пищевые и запасные белки, как следует из названия, служат источниками внутреннего питания, чаще для зародышей растений и животных, а также на ранних стадиях развития молодых организмов. К пищевым белкам относят альбумин (рис. 10) – основной компонент яичного белка, а также казеин – главный белок молока. Под действием фермента пепсина казеин в желудке створаживается, это обеспечивает его задержку в пищеварительном тракте и эффективное усвоение. Казеин содержит фрагменты всех аминокислот, необходимых организму.

    В ферритине (рис. 12), который содержится в тканях животных, запасены ионы железа.

    К запасным белкам относят также миоглобин, по составу и строению напоминающий гемоглобин. Миоглобин сосредоточен, главным образом, в мышцах, его основная роль – хранение кислорода, который ему отдает гемоглобин. Он быстро насыщается кислородом (намного быстрее, чем гемоглобин), а затем постепенно передает его различным тканям.

    Структурные белки выполняют защитную функцию (кожный покров) или опорную – скрепляют организм в единое целое и придают ему прочность (хрящи и сухожилия). Их главным компонентом является фибриллярный белок коллаген (рис. 11), наиболее распространенный белок животного мира, в организме млекопитающих, на его долю приходится почти 30% от всей массы белков. Коллаген обладает высокой прочностью на разрыв (известна прочность кожи), но из-за малого содержания поперечных сшивок в коллагене кожи, шкуры животных мало пригодны в сыром виде для изготовления различных изделий. Чтобы уменьшить набухание кожи в воде, усадку при сушке, а также для увеличения прочности в обводненном состоянии и повышения упругости в коллагене создают дополнительные поперечные сшивки (рис. 15а), это, так называемый процесс дубления кожи.

    В живых организмах молекулы коллагена, возникшие в процессе роста и развития организма, не обновляются и не замещаются заново синтезированными. По мере старения организма увеличивается количество поперечных сшивок в коллагене, что приводит к снижению его эластичности, а поскольку обновление не происходит, то проявляются возрастные изменения – увеличение хрупкости хрящей и сухожилий, появление морщин на коже.

    В суставных связках содержится эластин – структурный белок, легко растягивающийся в двух измерениях. Наибольшей эластичностью обладает белок резилин, который находится в местах шарнирного прикрепления крыльев у некоторых насекомых.

    Роговые образования – волосы, ногти, перья состоя, в основном, из белка кератина (рис. 24). Его основное отличие – заметное содержание остатков цистеина, образующего дисульфидные мостики, что придает высокую упругость (способность восстанавливать исходную форму после деформации) волосам, а также шерстяным тканям.

    Рис. 24. ФРАГМЕНТ ФИБРИЛЛЯРНОГО БЕЛКА КЕРАТИНА

    Для необратимого изменения формы кератинового объекта нужно вначале разрушить дисульфидные мостики с помощью восстановителя, придать новую форму, а затем вновь создать дисульфидные мостики с помощью окислителя (рис. 16), именно так делается, например, химическая завивка волос.

    При увеличении содержания остатков цистеина в кератине и, соответственно, возрастании количества дисульфидных мостиков способность к деформации исчезает, но при этом появляется высокая прочность (в рогах копытных животных и панцирях черепах содержится до 18% цистеиновых фрагментов). В организме млекопитающих содержится до 30 различных типов кератина.

    Родственный кератину фибриллярный белок фиброин, выделяемый гусеницами шелкопряда при завивке кокона, а также пауками при плетении паутины, содержит только β-структуры, соединенные одиночными цепями (рис. 11). В отличие от кератина, у фиброина нет поперечных дисульфидных мостиков, он обладает очень прочен на разрыв (прочность в расчете на единицу поперечного сечения у некоторых образцов паутины выше, чем у стальных тросов). Из-за отсутствия поперечных сшивок фиброин неупруг (известно, что шерстяные ткани почти несминаемы, а шелковые легко мнутся).

    Регуляторные белки.

    Регуляторные белки, чаще называемые гормонами , участвуют в различных физиологических процессах. Например, гормон инсулин (рис. 25) состоит из двух α-цепей, соединенных дисульфидными мостиками. Инсулин регулирует обменные процессы с участием глюкозы, его отсутствие ведет к диабету.

    Рис. 25 БЕЛОК ИНСУЛИН

    В гипофизе мозга синтезируется гормон, регулирующий рост организма. Существуют регуляторные белки, контролирующие биосинтез различных ферментов в организме.

    Сократительные и двигательные белки придают организму способность сокращаться, изменять форму и перемещаться, прежде всего, речь идет о мышцах. 40% от массы всех белков, содержащихся в мышцах, составляет миозин (mys, myos, греч . – мышца). Его молекула содержит одновременно фибриллярную и глобулярную часть (рис. 26)

    Рис. 26 МОЛЕКУЛА МИОЗИНА

    Такие молекулы объединяются в крупные агрегаты, содержащие 300–400 молекул.

    При изменении концентрации ионов кальция в пространстве, окружающем мышечные волокна, происходит обратимое изменение конформации молекул – изменение формы цепи за счет поворота отдельных фрагментов вокруг валентных связей. Это приводит к сокращению и расслаблению мышц, сигнал для изменения концентрации ионов кальция поступает от нервных окончаний в мышечных волокнах. Искусственное сокращение мышц можно вызвать действием электрических импульсов, приводящих к резкому изменению концентрации ионов кальция, на этом основана стимуляция сердечной мышцы для восстановления работы сердца.

    Защитные белки позволяют уберечь организм от вторжения атакующих его бактерий, вирусов и от проникновения чужеродных белков (обобщенное название чужеродных тел – антигены). Роль защитных белков выполняют иммуноглобулины (другое их название – антитела), они распознают антигены, проникшие в организм, и прочно связываются с ними. В организме млекопитающих, включая человека, есть пять классов иммуноглобулинов: M, G, A, D и E, их структура, как следует из названия, глобулярная, кроме того, все они построены сходным образом. Молекулярная организация антител показана далее на примере иммуноглобулина класса G (рис. 27). Молекула содержит четыре полипептидные цепи, объединенные тремя дисульфидными мостиками S-S (на рис. 27 они показаны с утолщенными валентными связями и крупными символами S), кроме того, каждая полимерная цепь содержит внутрицепные дисульфидные перемычки. Две большие полимерные цепи (выделены синим цветом) содержат 400–600 аминокислотных остатков. Две другие цепи (выделены зеленым цветом) почти вдвое короче, они содержат приблизительно 220 аминокислотных остатков. Все четыре цепи расположены таким образом, что концевые H 2 N-группы направлены в одну сторону.

    Рис. 27 СХЕМАТИЧЕСКОЕ ИЗОБРАЖЕНИЕ СТРУКТУРЫ ИММУНОГЛОБУЛИНА

    После контакта организма с чужеродным белком (антигеном), клетки иммунной системы начинают вырабатывать иммуноглобулины (антитела), которые накапливаются в сыворотке крови. На первом этапе основную работу совершают участки цепей, содержащие концевые H 2 N (на рис. 27 соответствующие участки отмечены светло-синим и светло-зеленым цветом). Это области захвата антигенов. В процессе синтеза иммуноглобулина эти участки формируется таким образом, чтобы их строение и конфигурация максимально соответствовали структуре приблизившегося антигена (как ключ к замку, подобно ферментам, но задачи в данном случае иные). Таким образом, для каждого антигена в качестве иммунного ответа создается строго индивидуальное антитело. Столь «пластично» изменять строение в зависимости от внешних факторов, помимо иммуноглобулинов, не может ни один известный белок. Ферменты решают задачу структурного соответствия реагенту иным путем – с помощью гигантского набора разнообразных ферментов в расчете на все возможные случаи, а иммуноглобулины каждый раз заново перестраивают «рабочий инструмент». Сверх того, шарнирный участок иммуноглобулина (рис. 27) обеспечивает двум областям захвата некоторую независимую подвижность, в результате молекула иммуноглобулина может «найти» сразу два наиболее удобных для захвата участка в антигене с тем, чтобы его надежно зафиксировать, это напоминает действия ракообразного существа.

    Далее включается цепь последовательных реакций иммунной системы организма, подключаются иммуноглобулины других классов, в результате происходит дезактивация чужеродного белка, а затем уничтожение и удаление антигена (постороннего микроорганизма или токсина).

    После контакта с антигеном максимальная концентрация иммуноглобулина достигается (в зависимости от природы антигена и индивидуальных особенностей самого организма) в течение нескольких часов (иногда нескольких дней). Организм сохраняет память о таком контакте, и при повторной атаке таким же антигеном иммуноглобулины накапливаются в сыворотке крови значительно быстрее и в большем количестве – возникает приобретенный иммунитет.

    Приведенная классификация белков носит в определенной степени условный характер, например белок тромбин, упомянутый среди защитных белков, по существу представляет собой фермент, катализирующий гидролиз пептидных связей, то есть, относится к классу протеаз.

    К защитным белкам часто относят белки змеиного яда и токсичные белки некоторых растений, поскольку их задача – уберечь организм от повреждений.

    Есть белки, функции которых настолько уникальны, что это затрудняет их классификацию. Например, белок монеллин, содержащийся в одном из африканских растений, – очень сладкий на вкус, он стал предметом изучения как нетоксичное вещество, которое может быть использовано вместо сахара для предотвращения ожирения. Плазма крови некоторых антарктических рыб содержит белки со свойствами антифриза, который предохраняет кровь этих рыб от замерзания.

    Искусственный синтез белков.

    Конденсация аминокислот, приводящая к полипептидной цепи, представляет собой хорошо изученный процесс. Можно провести, например, конденсацию какой – либо одной аминокислоты или смеси кислот и получить, соответственно, полимер, содержащий одинаковые звенья, либо различные звенья, чередующиеся в случайном порядке. Такие полимеры мало похожи на природные полипептиды и не обладают биологической активностью. Основная задача состоит в том, чтобы соединять аминокислоты в строго определенном, заранее намеченном порядке, чтобы воспроизвести последовательность аминокислотных остатков в природных белках. Американский ученый Роберт Меррифилд предложил оригинальный метод, позволивший решить такую задачу. Сущность метода состоит в том, что первую аминокислоту присоединяют к нерастворимому полимерному гелю, который содержит реакционно-способные группы, способные соединяться с –СООН – группами аминокислоты. В качестве такой полимерной подложки был взят сшитый полистирол с введенными в него хлорметильными группами. Чтобы взятая для реакции аминокислота не прореагировала сама с собой и чтобы она не присоединилась H 2 N-группой к подложке, аминогруппу этой кислоты предварительно блокируют объемистым заместителем [(С 4 Н 9) 3 ] 3 ОС(О)-группой. После того, как аминокислота присоединилась к полимерной подложке, блокирующую группу удаляют и в реакционную смесь вводят другую аминокислоту, у которой также предварительно заблокирована H 2 N-группа. В такой системе возможно только взаимодействие H 2 N-группы первой аминокислоты и группы –СООН второй кислоты, которое проводят в присутствии катализаторов (солей фосфония). Далее всю схему повторяют, вводя третью аминокислоту (рис. 28).

    Рис. 28. СХЕМА СИНТЕЗА ПОЛИПЕПТИДНЫХ ЦЕПЕЙ

    На последней стадии полученные полипептидные цепи отделяют от полистирольной подложки. Сейчас весь процесс автоматизирован, существуют автоматические синтезаторы пептидов, действующие по описанной схеме. Таким методом синтезировано множество пептидов, используемых в медицине и сельском хозяйстве. Удалось также получить улучшенные аналоги природных пептидов с избирательным и усиленным действием. Синтезированы некоторые небольшие белки, например гормон инсулина и некоторые ферменты.

    Существуют также методы синтеза белков, копирующие природные процессы: синтезируют фрагменты нуклеиновых кислот, настроенных на получение определенных белков, затем эти фрагменты встраивают в живой организм (например, в бактерию), после чего организм начинает вырабатывать нужный белок. Таким способом сейчас получают значительные количества труднодоступных белков и пептидов, а также их аналогов.

    Белки как источники питания.

    Белки в живом организме постоянно расщепляются на исходные аминокислоты (с непременным участием ферментов), одни аминокислоты переходят в другие, затем белки вновь синтезируются (также с участием ферментов), т.е. организм постоянно обновляется. Некоторые белки (коллаген кожи, волос) не обновляются, организм непрерывно их теряет и взамен синтезирует новые. Белки как источники питания выполняют две основные функции: они поставляют в организм строительный материал для синтеза новых белковых молекул и, кроме того, снабжают организм энергией (источники калорий).

    Плотоядные млекопитающие (в том числе и человек) получают необходимые белки с растительной и животной пищей. Ни один из полученных с пищей белков не встраивается в организм в неизменном виде. В пищеварительном тракте все поглощенные белки расщепляются до аминокислот, и уже из них строятся белки, необходимые конкретному организму, при этом из 8 незаменимых кислот (табл. 1) в организме могут синтезироваться остальные 12, если они не поступают в достаточном количестве с пищей, но незаменимые кислоты должны поступать с пищей непременно. Атомы серы в цистеине организм получает с незаменимой аминокислотой – метионином. Часть белков распадается, выделяя энергию, необходимую для поддержания жизнедеятельности, а содержавшийся в них азот выводится из организма с мочой. Обычно организм человека теряет 25–30 г. белка в сутки, поэтому белковая пища должны постоянно присутствовать в нужном количестве. Минимальная суточная потребность в белке составляет у мужчин 37 г, у женщин 29 г, однако рекомендованные нормы потребления почти вдвое выше. При оценке пищевых продуктов важно учитывать качество белка. При отсутствии или низком содержании незаменимых аминокислот белок считается малоценным, поэтому такие белки должны потребляться в большем количестве. Так, белки бобовых культур содержат мало метионина, а в белках пшеницы и кукурузы низкое содержанием лизина (обе аминокислоты незаменимые). Животные белки (исключая коллагены) относят к полноценным пищевым продуктам. Полный набор всех незаменимых кислот содержит казеин молока, а также приготовляемые из него творог и сыр, поэтому вегетарианская диета, в том случае, если она очень строгая, т.е. «безмолочная», требует усиленного потребления бобовых культур, орехов и грибов для снабжения организма незаменимыми аминокислотами в нужном количестве.

    Синтетические аминокислоты и белки используют и как пищевые продукты, добавляя их в корма, которые содержат незаменимые аминокислоты в малом количестве. Существуют бактерии, которые могут перерабатывать и усваивать углеводороды нефти, в этом случае для полноценного синтеза белков их нужно подкармливать азотсодержащими соединениями (аммиак или нитраты). Получаемый таким способом белок используют в качестве корма для скота и домашней птицы. В комбикорм домашних животных часто добавляют набор ферментов – карбогидраз, которые катализируют гидролиз трудно разлагаемых компонентов углеводной пищи (клеточные стенки зерновых культур), в результате чего растительная пища усваивается более полно.

    Михаил Левицкий

    БЕЛКИ (статья 2)

    (протеины), класс сложных азотсодержащих соединений, наиболее характерных и важных (наряду с нуклеиновыми кислотами) компонентов живого вещества. Белки выполняют многочисленные и разнообразные функции. Большинство белков – ферменты, катализирующие химические реакции. Многие гормоны, регулирующие физиологические процессы, тоже являются белками. Такие структурные белки, как коллаген и кератин, служат главными компонентами костной ткани, волос и ногтей. Сократительные белки мышц обладают способностью изменять свою длину, используя химическую энергию для выполнения механической работы. К белкам относятся антитела, которые связывают и нейтрализуют токсичные вещества. Некоторые белки, способные реагировать на внешние воздействия (свет, запах), служат в органах чувств рецепторами, воспринимающими раздражение. Многие белки, расположенные внутри клетки и на клеточной мембране, выполняют регуляторные функции.

    В первой половине 19 в. многие химики, и среди них в первую очередь Ю.фон Либих, постепенно пришли к выводу, что белки представляют собой особый класс азотистых соединений. Название «протеины» (от греч. protos – первый) предложил в 1840 голландский химик Г.Мульдер.

    ФИЗИЧЕСКИЕ СВОЙСТВА

    Белки в твердом состоянии белого цвета, а в растворе бесцветны, если только они не несут какой-нибудь хромофорной (окрашенной) группы, как, например, гемоглобин. Растворимость в воде у разных белков сильно варьирует. Она изменяется также в зависимости от рН и от концентрации солей в растворе, так что можно подобрать условия, при которых один какой-нибудь белок будет избирательно осаждаться в присутствии других белков. Этот метод «высаливания» широко используется для выделения и очистки белков. Очищенный белок часто выпадает в осадок из раствора в виде кристаллов.

    В сравнении с другими соединениями молекулярная масса белков очень велика – от нескольких тысяч до многих миллионов дальтон. Поэтому при ультрацентрифугировании белки осаждаются, и притом с разной скоростью. Благодаря присутствию в молекулах белков положительно и отрицательно заряженных групп они движутся с разной скоростью и в электрическом поле. На этом основан электрофорез – метод, применяемый для выделения индивидуальных белков из сложных смесей. Очистку белков проводят и методом хроматографии.

    ХИМИЧЕСКИЕ СВОЙСТВА

    Строение.

    Белки – это полимеры, т.е. молекулы, построенные, как цепи, из повторяющихся мономерных звеньев, или субъединиц, роль которых играют у них aльфа-аминокислоты. Общая формула аминокислот

    где R – атом водорода или какая-нибудь органическая группа.

    Белковая молекула (полипептидная цепь) может состоять всего лишь из относительно небольшого числа аминокислот или из нескольких тысяч мономерных звеньев. Соединение аминокислот в цепи возможно потому, что у каждой из них имеются две разные химические группы: обладающая основными свойствами аминогруппа, NH2, и кислотная карбоксильная группа, СООН. Обе эти группы присоединены к a-атому углерода. Карбоксильная группа одной аминокислоты может образовать амидную (пептидную) связь с аминогруппой другой аминокислоты:

    После того как две аминокислоты таким образом соединились, цепь может наращиваться путем добавления ко второй аминокислоте третьей и т.д. Как видно из приведенного выше уравнения, при образовании пептидной связи выделяется молекула воды. В присутствии кислот, щелочей или протеолитических ферментов реакция идет в обратном направлении: полипептидная цепь расщепляется на аминокислоты с присоединением воды. Такая реакция называется гидролизом. Гидролиз протекает спонтанно, а для соединения аминокислот в полипептидную цепь требуется энергия.

    Карбоксильная группа и амидная группа (или сходная с ней имидная – в случае аминокислоты пролина) имеются у всех аминокислот, различия же между аминокислотами определяются природой той группы, или «боковой цепи», которая обозначена выше буквой R. Роль боковой цепи может играть и один атом водорода, как у аминокислоты глицина, и какая-нибудь объемистая группировка, как у гистидина и триптофана. Некоторые боковые цепи в химическом смысле инертны, тогда как другие обладают заметной реакционной способностью.

    Синтезировать можно многие тысячи различных аминокислот, и множество различных аминокислот встречается в природе, но для синтеза белков используется только 20 видов аминокислот: аланин, аргинин, аспарагин, аспарагиновая кислота, валин, гистидин, глицин, глутамин, глутаминовая кислота, изолейцин, лейцин, лизин, метионин, пролин, серин, тирозин, треонин, триптофан, фенилаланин и цистеин (в белках цистеин может присутствовать в виде димера – цистина). Правда, в некоторых белках присутствуют и другие аминокислоты, помимо регулярно встречающихся двадцати, но они образуются в результате модификации какой-нибудь из двадцати перечисленных уже после того, как она включилась в белок.

    Оптическая активность.

    У всех аминокислот, за исключением глицина, кα-атому углерода присоединены четыре разные группы. С точки зрения геометрии, четыре разные группы могут быть присоединены двумя способами, и соответственно есть две возможные конфигурации, или два изомера, относящиеся друг к другу, как предмет к своему зеркальному отражению, т.е. как левая рука к правой. Одну конфигурацию называют левой, или левовращающей (L), а другую – правой, или правовращающей (D), поскольку два таких изомера различаются направлением вращения плоскости поляризованного света. В белках встречаются только L-аминокислоты (исключение составляет глицин; он может быть представлен лишь одной формой, поскольку у него две из четырех групп одинаковы), и все они обладают оптической активностью (поскольку имеется только один изомер). D-аминокислоты в природе редки; они встречаются в некоторых антибиотиках и клеточной оболочке бактерий.

    Последовательность аминокислот.

    Аминокислоты в полипептидной цепи располагаются не случайным образом, а в определенном фиксированном порядке, и именно этот порядок определяет функции и свойства белка. Варьируя порядок расположения 20 видов аминокислот, можно получить огромное число разных белков, точно так же, как из букв алфавита можно составить множество разных текстов.

    В прошлом на определение аминокислотной последовательности какого-нибудь белка уходило нередко несколько лет. Прямое определение и теперь достаточно трудоемкое дело, хотя созданы приборы, позволяющие вести его автоматически. Обычно проще бывает определить нуклеотидную последовательность соответствующего гена и вывести из нее аминокислотную последовательность белка. К настоящему времени уже определены аминокислотные последовательности многих сотен белков. Функции расшифрованных белков, как правило, известны, и это помогает представить себе возможные функции сходных белков, образующихся, например, при злокачественных новообразованиях.

    Сложные белки.

    Белки, состоящие из одних только аминокислот, называют простыми. Часто, однако, к полипептидной цепи бывают присоединены атом металла или какое-нибудь химическое соединение, не являющееся аминокислотой. Такие белки называются сложными. Примером может служить гемоглобин: он содержит железопорфирин, который определяет его красный цвет и позволяет ему играть роль переносчика кислорода.

    В названиях большинства сложных белков содержится указание на природу присоединенных групп: в гликопротеинах присутствуют сахара, в липопротеинах – жиры. Если от присоединенной группы зависит каталитическая активность фермента, то ее называют простетической группой. Нередко какой-нибудь витамин играет роль простетической группы или входит в ее состав. Витамин А, например, присоединенный к одному из белков сетчатки, определяет ее чувствительность к свету.

    Третичная структура.

    Важна не столько сама аминокислотная последовательность белка (первичная структура), сколько способ ее укладки в пространстве. По всей длине полипептидной цепи ионы водорода образуют регулярные водородные связи, которые придают ей форму спирали либо слоя (вторичная структура). Из комбинации таких спиралей и слоев возникает компактная форма следующего порядка – третичная структура белка. Вокруг связей, удерживающих мономерные звенья цепи, возможны повороты на небольшие углы. Поэтому с чисто геометрической точки зрения число возможных конфигураций для любой полипептидной цепи бесконечно велико. В действительности же каждый белок существует в норме только в одной конфигурации, определяемой его аминокислотной последовательностью. Структура эта не жесткая, она как бы «дышит» – колеблется вокруг некой средней конфигурации. Цепь складывается в такую конфигурацию, при которой свободная энергия (способность производить работу) минимальна, подобно тому как отпущенная пружина сжимается лишь до состояния, соответствующего минимуму свободной энергии. Нередко одна часть цепи бывает жестко сцеплена с другой дисульфидными (–S–S–) связями между двумя остатками цистеина. Отчасти именно поэтому цистеин среди аминокислот играет особо важную роль.

    Сложность строения белков столь велика, что пока еще невозможно вычислить третичную структуру белка, если даже известна его аминокислотная последовательность. Но если удается получить кристаллы белка, то его третичную структуру можно определить по дифракции рентгеновских лучей.

    У структурных, сократительных и некоторых других белков цепи вытянуты и несколько лежащих рядом слегка свернутых цепей образуют фибриллы; фибриллы, в свою очередь, складываются в более крупные образования – волокна. Однако большинство белков в растворе имеет глобулярную форму: цепи свернуты в глобуле, как пряжа в клубке. Свободная энергия при такой конфигурации минимальна, поскольку гидрофобные («отталкивающие воду») аминокислоты скрыты внутри глобулы, а гидрофильные («притягивающие воду») находятся на ее поверхности.

    Многие белки – это комплексы из нескольких полипептидных цепей. Такое строение называется четвертичной структурой белка. Молекула гемоглобина, например, состоит из четырех субъединиц, каждая из которых представляет собой глобулярный белок.

    Структурные белки благодаря своей линейной конфигурации образуют волокна, у которых предел прочности на разрыв очень высок, глобулярная же конфигурация позволяет белкам вступать в специфические взаимодействия с другими соединениями. На поверхности глобулы при правильной укладке цепей возникают определенной формы полости, в которых размещены реакционноспособные химические группы. Если данный белок – фермент, то другая, обычно меньшая, молекула какого-то вещества входит в такую полость подобно тому, как ключ входит в замок; при этом меняется конфигурация электронного облака молекулы под влиянием находящихся в полости химических групп, и это вынуждает ее определенным образом реагировать. Таким способом фермент катализирует реакцию. В молекулах антител тоже имеются полости, в которых различные чужеродные вещества связываются и тем самым обезвреживаются. Модель «ключа и замка», объясняющая взаимодействие белков с другими соединениями, позволяет понять специфичность ферментов и антител, т.е. их способность реагировать только с определенными соединениями.

    Белки у разных видов организмов.

    Белки, выполняющие одну и ту же функцию у разных видов растений и животных и потому носящие одно и то же название, имеют и сходную конфигурацию. Они, однако, несколько различаются по своей аминокислотной последовательности. По мере того как виды дивергируют от общего предка, некоторые аминокислоты в определенных положениях замещаются в результате мутаций другими. Вредные мутации, являющиеся причиной наследственных болезней, выбраковываются естественным отбором, но полезные или по крайней мере нейтральные могут сохраняться. Чем ближе друг к другу два каких-нибудь биологических вида, тем меньше различий обнаруживается в их белках.

    Некоторые белки меняются относительно быстро, другие весьма консервативны. К последним принадлежит, например, цитохром с – дыхательный фермент, имеющийся у большинства живых организмов. У человека и шимпанзе его аминокислотные последовательности идентичны, а в цитохроме с пшеницы иными оказались лишь 38% аминокислот. Даже сравнивая человека и бактерии, сходство цитохромов с (различия затрагивают здесь 65% аминокислот) все еще можно заметить, хотя общий предок бактерии и человека жил на Земле около двух миллиардов лет назад. В наше время сравнение аминокислотных последовательностей часто используют для построения филогенетического (генеалогического) древа, отражающего эволюционные связи между разными организмами.

    Денатурация.

    Синтезированная молекула белка, складываясь, приобретает свойственную ей конфигурацию. Эта конфигурация, однако, может разрушиться при нагревании, при изменении рН, под действием органических растворителей и даже при простом взбалтывании раствора до появления на его поверхности пузырьков. Измененный таким образом белок называют денатурированным; он утрачивает свою биологическую активность и обычно становится нерастворимым. Хорошо знакомые всем примеры денатурированного белка – вареные яйца или взбитые сливки. Небольшие белки, содержащие всего лишь около сотни аминокислот, способны ренатурировать, т.е. вновь приобретать исходную конфигурацию. Но большинство белков превращается при этом просто в массу спутанных полипептидных цепей и прежнюю конфигурацию не восстанавливает.

    Одна из главных трудностей при выделении активных белков связана с их крайней чувствительностью к денатурации. Полезное применение это свойство белков находит при консервировании пищевых продуктов: высокая температура необратимо денатурирует ферменты микроорганизмов, и микроорганизмы погибают.

    СИНТЕЗ БЕЛКОВ

    Для синтеза белка живой организм должен располагать системой ферментов, способных присоединять одну аминокислоту к другой. Необходим также источник информации, которая бы определяла, какие именно аминокислоты следует соединять. Поскольку в организме имеются тысячи видов белков и каждый из них состоит в среднем из нескольких сотен аминокислот, необходимая информация должна быть поистине огромной. Хранится она (подобно тому, как хранится запись на магнитной ленте) в молекулах нуклеиновых кислот, из которых состоят гены.

    Активация ферментов.

    Синтезированная из аминокислот полипептидная цепь – это далеко не всегда белок в его окончательной форме. Многие ферменты синтезируются сначала в виде неактивных предшественников и переходят в активную форму лишь после того, как другой фермент удалит на одном из концов цепи несколько аминокислот. В такой неактивной форме синтезируются некоторые из пищеварительных ферментов, например трипсин; эти ферменты активируются в пищеварительном тракте в результате удаления концевого фрагмента цепи. Гормон инсулин, молекула которого в активной форме состоит из двух коротких цепей, синтезируется в виде одной цепи, т.н. проинсулина. Затем средняя часть этой цепи удаляется, а оставшиеся фрагменты связываются друг с другом, образуя активную молекулу гормона. Сложные белки образуются лишь после того, как к белку будет присоединена определенная химическая группа, а для этого присоединения часто тоже требуется фермент.

    Метаболический кругооборот.

    После скармливания животному аминокислот, меченных радиоактивными изотопами углерода, азота или водорода, метка быстро включается в его белки. Если меченые аминокислоты перестают поступать в организм, то количество метки в белках начинает снижаться. Эти эксперименты показывают, что образовавшиеся белки не сохраняются в организме до конца жизни. Все они, за немногими исключениями, находятся в динамичном состоянии, постоянно распадаются до аминокислот, а затем вновь синтезируются.

    Некоторые белки распадаются, когда гибнут и разрушаются клетки. Это постоянно происходит, например, с эритроцитами и клетками эпителия, выстилающего внутреннюю поверхность кишечника. Кроме того, распад и ресинтез белков протекают и в живых клетках. Как ни странно, о распаде белков известно меньше, чем об их синтезе. Ясно, однако, что в распаде участвуют протеолитические ферменты, сходные с теми, которые расщепляют белки до аминокислот в пищеварительном тракте.

    Период полураспада у разных белков различен – от нескольких часов до многих месяцев. Единственное исключение – молекулы коллагена. Однажды образовавшись, они остаются стабильными, не обновляются и не замещаются. Со временем, однако, меняются некоторые их свойства, в частности эластичность, а поскольку они не обновляются, следствием этого оказываются определенные возрастные изменения, например появление морщин на коже.

    Синтетические белки.

    Химики давно уже научились полимеризовать аминокислоты, но аминокислоты соединяются при этом неупорядоченно, так что продукты такой полимеризации мало похожи на природные. Правда, имеется возможность соединять аминокислоты в заданном порядке, что позволяет получать некоторые биологически активные белки, в частности инсулин. Процесс достаточно сложен, и таким способом удается получать лишь те белки, в молекулах которых содержится около сотни аминокислот. Предпочтительнее вместо этого синтезировать или выделить нуклеотидную последовательность гена, соответствующую желаемой аминокислотной последовательности, а затем ввести этот ген в бактерию, которая и будет вырабатывать путем репликации большое количество нужного продукта. У этого метода, впрочем, тоже есть свои недостатки.

    БЕЛКИ И ПИТАНИЕ

    Когда белки в организме распадаются до аминокислот, эти аминокислоты могут быть снова использованы для синтеза белков. В то же время и сами аминокислоты подвержены распаду, так что они реутилизируются не полностью. Ясно также, что в период роста, при беременности и заживлении ран синтез белков должен превышать распад. Некоторые же белки организм непрерывно теряет; это белки волос, ногтей и поверхностного слоя кожи. Поэтому для синтеза белков каждый организм должен получать аминокислоты с пищей.

    Источники аминокислот.

    Зеленые растения синтезируют из СО2, воды и аммиака или нитратов все 20 аминокислот, встречающихся в белках. Многие бактерии тоже способны синтезировать аминокислоты при наличии сахара (или какого-нибудь его эквивалента) и фиксированного азота, но и сахар, в конечном счете, поставляется зелеными растениями. У животных способность к синтезу аминокислот ограниченна; они получают аминокислоты, поедая зеленые растения или других животных. В пищеварительном тракте поглощенные белки расщепляются до аминокислот, последние всасываются, и уже из них строятся белки, характерные для данного организма. Ни один поглощенный белок не включается в структуры тела как таковой. Единственное исключение заключается в том, что у многих млекопитающих часть материнских антител может в интактном виде попасть через плаценту в кровоток плода, а через материнское молоко (особенно у жвачных) быть передано новорожденному сразу же после его появления на свет.

    Потребность в белках.

    Ясно, что для поддержания жизни организм должен получать с пищей некоторое количество белков. Однако размеры этой потребности зависят от ряда факторов. Организму необходима пища и как источник энергии (калорий), и как материал для построения его структур. На первом месте стоит потребность в энергии. Это значит, что, когда углеводов и жиров в рационе мало, пищевые белки используются не для синтеза собственных белков, а в качестве источника калорий. При длительном голодании даже собственные белки расходуются на удовлетворение энергетических нужд. Если же углеводов в рационе достаточно, то потребление белков может быть снижено.

    Азотистый баланс.

    В среднем ок. 16% всей массы белка составляет азот. Когда входившие в состав белков аминокислоты расщепляются, содержавшийся в них азот выводится из организма с мочой и (в меньшей мере) с калом в виде различных азотистых соединений. Удобно поэтому для оценки качества белкового питания использовать такой показатель, как азотистый баланс, т.е. разность (в граммах) между количеством азота, поступившего в организм, и количеством выведенного азота за сутки. При нормальном питании у взрослого эти количества равны. У растущего организма количество выведенного азота меньше количества поступившего, т.е. баланс положителен. При нехватке белков в рационе баланс отрицателен. Если калорий в рационе достаточно, но белки в нем полностью отсутствуют, организм сберегает белки. Белковый обмен при этом замедляется, и повторная утилизация аминокислот в синтезе белка идет с максимально возможной эффективностью. Однако потери неизбежны, и азотистые соединения все же выводятся с мочой и частично с калом. Количество азота, выведенного из организма за сутки при белковом голодании, может служить мерой суточной нехватки белка. Естественно предположить, что, введя в рацион количество белка, эквивалентное этому дефициту, можно восстановить азотистый баланс. Однако это не так. Получив такое количество белка, организм начинает использовать аминокислоты менее эффективно, так что для восстановления азотистого баланса требуется некоторое дополнительное количество белка.

    Если количество белка в рационе превышает необходимое для поддержания азотистого баланса, то вреда от этого, по-видимому, нет. Избыток аминокислот просто используется как источник энергии. В качестве особенно яркого примера можно сослаться на эскимосов, которые потребляют мало углеводов и примерно в десять раз больше белка, чем требуется для поддержания азотистого баланса. В большинстве случаев, однако, использование белка в качестве источника энергии невыгодно, поскольку из определенного количества углеводов можно получить намного больше калорий, чем из такого же количества белка. В бедных странах население получает необходимые калории за счет углеводов и потребляет минимальное количество белка.

    Если необходимое число калорий организм получает в форме небелковых продуктов, то минимальное количество белка, обеспечивающее поддержание азотистого баланса, составляет для взрослого человека ок. 30 г в день. Примерно столько белка содержится в четырех ломтиках хлеба или 0,5 л молока. Оптимальным считают обычно несколько большее количество; рекомендуется от 50 до 70 г.

    Незаменимые аминокислоты.

    До сих пор белок рассматривался как нечто целое. Между тем для того, чтобы мог идти синтез белка, в организме должны присутствовать все необходимые аминокислоты. Некоторые из аминокислот организм животного сам способен синтезировать. Их называют заменимыми, поскольку они не обязательно должны присутствовать в рационе, – важно лишь, чтобы в целом поступление белка как источника азота было достаточным; тогда при нехватке заменимых аминокислот организм может синтезировать их за счет тех, что присутствуют в избытке. Остальные, «незаменимые», аминокислоты не могут быть синтезированы и должны поступать в организм с пищей. Для человека незаменимыми являются валин, лейцин, изолейцин, треонин, метионин, фенилаланин, триптофан, гистидин, лизин и аргинин. (Хотя аргинин и может синтезироваться в организме, его относят к незаменимым аминокислотам, поскольку у новорожденных и растущих детей он образуется в недостаточном количестве. С другой стороны, для человека зрелого возраста поступление некоторых из этих аминокислот с пищей может стать необязательным.)

    Этот список незаменимых аминокислот приблизительно одинаков также и у других позвоночных и даже у насекомых. Питательную ценность белков обычно определяют, скармливая их растущим крысам и следя за прибавкой веса животных.

    Питательная ценность белков.

    Питательную ценность белка определяют по той незаменимой аминокислоте, которой более всего не хватает. Проиллюстрируем это на примере. В белках нашего тела содержится в среднем ок. 2% триптофана (по весу). Допустим, что в рацион входит 10 г белка, содержащего 1% триптофана, и что других незаменимых аминокислот в нем достаточно. В нашем случае 10 г этого неполноценного белка по сути эквивалентны 5 г полноценного; остальные 5 г могут послужить только источником энергии. Отметим, что, поскольку аминокислоты в организме практически не запасаются, а для того чтобы мог идти синтез белка, должны одновременно присутствовать все аминокислоты, эффект от поступления незаменимых аминокислот можно обнаружить лишь в том случае, если все они поступят в организм одновременно.

    Усредненный состав большей части животных белков близок к усредненному составу белков человеческого тела, так что аминокислотная недостаточность нам вряд ли грозит, если наш рацион богат такими продуктами, как мясо, яйца, молоко и сыр. Однако есть белки, например желатин (продукт денатурации коллагена), которые содержат очень мало незаменимых аминокислот. Растительные белки, хотя они в этом смысле и лучше желатина, тоже бедны незаменимыми аминокислотами; особенно мало в них лизина и триптофана. Тем не менее и чисто вегетарианскую диету вовсе нельзя считать вредной, если только при этом потребляется несколько большее количество растительных белков, достаточное для того, чтобы обеспечить организм незаменимыми аминокислотами. Больше всего белка содержится у растений в семенах, особенно в семенах пшеницы и различных бобовых культур. Богаты белком также и молодые побеги, например у спаржи.

    Синтетические белки в рационе.

    Добавляя небольшие количества синтетических незаменимых аминокислот или богатых ими белков к неполноценным белкам, например к белкам кукурузы, можно значительно повысить питательную ценность последних, т.е. тем самым как бы увеличить количество потребляемого белка. Другая возможность состоит в выращивании бактерий или дрожжей на углеводородах нефти с добавлением нитратов или аммиака в качестве источника азота. Полученный таким путем микробный белок может служить кормом для домашней птицы или скота, а может и непосредственно потребляться человеком. Третий, широко применяющийся, метод использует особенности физиологии жвачных животных. У жвачных в начальном отделе желудка, т.н. рубце, обитают особые формы бактерий и простейших, которые превращают неполноценные растительные белки в более полноценные микробные белки, а эти, в свою очередь, – после переваривания и всасывания – превращаются в животные белки. К корму скота можно добавить мочевину – дешевое синтетическое азотсодержащее соединение. Обитающие в рубце микроорганизмы используют азот мочевины для превращения углеводов (которых в корме значительно больше) в белок. Около трети всего азота в корме скота может поступать в виде мочевины, что по сути и означает в определенной мере химический синтез белка.

    Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

    Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

    Размещено на http://www.allbest.ru

    ГЛАВА 1. ВВЕДЕНИЕ

    Довольно банальными стали сейчас сообщения о революции в биологии. Бесспорным считается и то, что эти революционные изменения были связаны с формированием на стыке биологии и химии комплекса наук, среди которых центральное положение занимали и занимают молекулярная биология и биоорганическая химия.

    “Молекулярная биология наука, ставящая своей целью познание природы явлений жизнедеятельности путем изучения биологических объектов и систем на уровне, приближающемся к молекулярному… характерные проявления жизни… обусловлены структурой, свойствами и взаимодействием молекул биологически важных веществ, в первую очередь белков и нуклеиновых кислот

    “Биоорганическая химия - наука, изучающая вещества, лежащие в основе процессов жизнедеятельности…основные объекты биоорганической химии биополимеры (белки и пептиды, нуклеиновые кислоты и нуклеотиды, липиды, полисахариды и т.д.).

    Из этого сопоставления становится очевидным, сколь важно для развития современной биологии изучение белков.

    биология белок биохимия

    ГЛАВА 2. ИСТОРИЯ ИССЛЕДОВАНИЯ БЕЛКА

    2.1 Начальные этапы в химии белка

    Белок попал в число объектов химических исследований 250 лет тому назад. В 1728 году итальянский ученый Якопо Бартоломео Беккари получил из пшеничной муки первый препарат белкового вещества - клейковины. Он подверг клейковину сухой перегонке и убедился, что продукты такой перегонки были щелочными. Это было первое доказательство единства природы веществ растительного и животного царств. Он опубликовал результаты своей работы в 1745 году, и это была первая статья о белке.

    В XVIII - начале XIX веков неоднократно описывали белковые вещества растительного и животного происхождения. Особенностью таких описаний было сближение этих веществ и сопоставление их с веществами неорганическими.

    Важно отметить, что в это время, еще до появления элементного анализа, сложилось представление о том, что белки из различных источников - это группа близких по общим свойствам индивидуальных веществ.

    В 1810 году Ж. Гей-Люссак и Л. Тенар впервые определили элементный состав белковых веществ. В 1833 году Ж. Гей-Люссак доказал, что в белках обязательно присутствует азот, а вскоре было показано, что содержание азота в различных белках приблизительно одинаково. В это же время английский химик Д. Дальтон попытался изобразить первые формулы белковых веществ. Он представлял их довольно просто устроенными веществами, но чтобы подчеркнуть их индивидуальное различие при одинаковом составе, он прибег к изображению молекул, которые бы сейчас назвали изомерными. Однако понятия изомерии во времена Дальтона еще не было.

    Формулы белков Д. Дальтона

    Были выведены первые эмпирические формулы белков и выдвинуты первые гипотезы относительно закономерностей их состава. Так, Н.Либеркюн считал, что альбумин описывается формулой C 72 H 112 N 18 SO 22 , а А.Данилевский полагал, что молекула этого белка по крайней мере на порядок больше: C 726 H 1171 N 194 S 3 O 214 .

    Немецкий химик Ю. Либих в 1841 году предположил, что белки животного происхождения имеют аналоги среди растительных белков: усвоение белка легумина в организме животного, по Либиху, вело к накоплению аналогичного белка - казеина. Одной из самых распространенных теорий доструктурной органической химии была теория радикалов - неизменных компонентов родственных веществ. В 1836 году голландец Г. Мульдер высказал предположение о том, что все белки содержат один и тот же радикал, который он назвал протеином (от греческого слова “первенствую”, “занимаю первое место”). Протеин, по Мульдеру, имел состав Pr = C 40 H 62 N 10 O 12 . В 1838 году Г. Мульдер опубликовал формулы белков, построенные на основании теории протеина. Это были т.н. дуалистические формулы, где радикал протеина служил положительной группировкой, а атомы серы или фосфора - отрицательной. Вместе они образовывали электронейтральную молекулу: белок сыворотки крови Pr 10 S 2 P, фибрин Pr 10 SP. Однако аналитическая проверка данных Г. Мульдера, проведенная русским химиком Лясковским, а также Ю. Либихом, показала, что “белковых радикалов” не существует.

    В 1833 году немецкий ученый Ф. Розе открыл биуретовую реакцию на белки - одну из основных цветных реакций на белковые вещества и их производные в настоящее время (подробнее о цветных реакциях на стр.53). Был сделан также вывод о том, что это самая чувствительная реакция на белок, поэтому она в то время привлекла наибольшее внимание химиков.

    В середине XIX века были разработаны многочисленные методы экстракции белков, очистки и выделения их в растворах нейтральных солей. В 1847 году К. Рейхерт открыл способность белков образовывать кристаллы. В 1836 году Т. Шванн открыл пепсин - фермент, расщепляющий белки. В 1856 году Л. Корвизар открыл еще один подобный фермент - трипсин. Изучая действие этих ферментов на белки, биохимики пытались разгадать тайну пищеварения. Однако наибольшее внимание внимание привлекли вещества, получающиеся в результате действия на белки протелитических фермнтов (протеаз, к ним относятся вышеприведенные ферменты): одни из них были фрагментами исходных молекул белка (их назвали пептонами ), другие же не подвергались дальнейшему расщеплению протеазами и относились к известному еще с начала века классу соединений - аминокислот (первое аминокислотное производное - амид аспарагин был открыт в 1806 году, а первая аминокислота - цистин в 1810). Аминокислоты в составе белков впервые обнаружил в 1820 году французский химик А. Браконно. Он применил кислотный гидролиз белка и в гидролизате обнаружил сладковатое вещество, названное им глицином. В 1839 году было доказано существование в составе белков лейцина, а в 1849 году Ф. Бопп выделил из белка еще одну аминокислоту - тирозин (полный список дат открытий аминокислот в белках см. Приложение II).

    К концу 80-х гг. XIX века из белковых гидролизатов было выделено уже 19 аминокислот и стало медленно укрепляться мнение, что сведения о продуктах гидролиза белков несут важную информацию о строении белковой молекулы. Тем не менее, аминокислоты считались обязательным, но неглавным компонентом белка.

    В связи с открытиями аминокислот в составе белков французский ученый П. Шютценберже в 70-х гг. XIX века предложил т. н. уреидную теорию строения белка. Согласно ей молекула белка состояла из центрального ядра, роль которого выполняла молекула тирозина, и присоединенных к нему (с замещением 4 атомов водорода) слож ных группировок, названных Шютценберже лейцинами . Однако гипотеза было очень слабо подкреплена экспериментально, и дальнейшие исследования показали несостоятельность.

    2.2 Теория “углеазотных комплексов” А.Я. Данилевского

    Оригинальную теорию о строении белка высказал в 80-х гг. XIX века русский биохимик А. Я. Данилевский. Первым из химиков он обратил внимание на возможный полимерный характер строения белковых молекул. В начале 70-х гг. он писал А.М. Бутлерову, что “частицы альбумина есть смешанный полимерид”, что для определения белка он не находит “термина более подходящего, чем слово полимер в широком смысле”. Изучая биуретовую реакцию он предположил, что эта реакция связана со структурой перемежающихся атомов углерода и азота - N - C - N - C - N - , которые входят в т.н. углеазо т ный комплекс R" - NH - CO - NH - CO - R”. На основе данной формулы Данилевский полагал, что в молекуле белка содержится 40 таких углеазотных комплексов. Отдельные углеазотноаминокислотные комплекс, по Данилевскому, выглядели так:

    По Данилевскому углеазотные комплексы могли соединяться эфирной или амидной связью с образованием высокомолекулярной структуры.

    2.3 Теория “киринов” А. Косселя

    Немецкий физиолог и биохимик А. Коссель, изучая протамины и гистоны, относительно просто устроенные белки, он установил, что при их гидролизе образуется большое количество аргинина. Кроме того он открыл в составе гидролизата неизвестную тогда аминокислоту - гистидин. На основании этого Коссель предположил, что эти белковые вещества можно рассматривать как некие простейшие модели более сложных белков, построенных, по его мнению, согласно следующему принципу: аргинин и гистидин составляют центральное ядро (“протаминовое ядро”), которое окружено комплексами из других аминокислот.

    Теория Косселя представляла собой наиболее совершенный пример развития гипотезы о фрагментарном строении белков (впервые предложенной, как было сказано выше, Г.Мульдером). Этой гипотезой воспользовался немецкий химик М. Зигфрид в начале XX века. Он полагал, что белки построены из комплексов аминокислот (аргинин+лизин+глутаминовая к-та), названных им киринами (от греческого “кириос” основной). Однако эта гипотеза была высказана в 1903 году, когда Э. Фишер активно разрабатывал свою пептидную теорию , давшую ключ к тайне строения белков.

    2.4 Пептидная теория Э. Фишера

    Немецкий химик Эмиль Фишер, уже прославившийся на весь мир исследованиями пуриновых соединений (алкалоидов группы кофеина) и расшифровкой структуры сахаров, создал пептидную теорию, во многом подтвердившуюся практически и получившую всеобщее признание еще при его жизни, за что он был удостоен второй в истории химии Нобелевской премии (первую получил Я.Г. Вант-Гофф).

    Немаловажно, что Фишер построил план исследования, резко отличающийся от того, что предпринималось раньше, однако учитывающий все известные на тот момент факты. Прежде всего он принял, как наиболее вероятную гипотезу о том, что белки построены из аминокислот, соединенных амидной связью:

    Такой тип связи Фишер назвал (по аналогии с пептонами) пептидной . Он предположил, что белки представляют собой полимеры аминокислот, соединенных пептидной связью . Идея о полимерном характере строения белков как известно высказывалась еще Данилевским и Хертом, но они считали, что “мономеры” представляют собой очень сложные образования - пептоны или “углеазотные комплексы”.

    Доказывая пептидный тип соединения аминокислотных остатков. Э. Фишер исходил из следующих наблюдений. Во-первых, и при гидролизе белков, и при их ферментативном разложении образовывались различные аминокислоты. Другие соединения было чрезвычайно трудно описать а еще труднее получить. Кроме того Фишеру было известно, что у белков не наблюдается преобладания ни кислотных, ни основных свойств, значит, рассуждал он, амино- и карбоксильные группы в составе аминокислот в белковых молекулах замыкаются и как бы маскируют друг друга (амфотерность белков, как сказали бы сейчас).

    Решение проблемы строения белка Фишер разделил, сведя ее к следующим положениям:

    Качественное и количественное определение продуктов полного гидролиза белков.

    Установление строения этих конечных продуктов.

    Синтез полимеров аминокислот с соединениями амидного (пептидного) типа.

    Сравнение полученных таким образом соединений с природными белками.

    Из этого плана видно, что Фишер применил впервые новый методологический подход - синтез модельных соединений, как способ доказательства по аналогии.

    2.5 Разработка методов синтеза аминокислот

    Для того чтобы перейти к синтезу производных аминокислот, соединенных пептидной связью, Фишер провел большую работу по изучению строения и синтезу аминокислот.

    До Фишера общим методом синтеза аминокислот был циангидринный синтез А. Штреккера:

    По реакции Штреккера удалось синтезировать аланин, серин и некоторые другие аминокислоты, а по ее модификации (реакции Зелинского-Стадникова) как -аминокислоты, так и их N-замещенные.

    Однако сам Фишер стремился разработать методы синтеза всех известных тогда аминокислот. Он считал метод Штреккера недостаточно универсальным. Поэтому Э. Фишеру пришлось искать общий метод синтеза аминокислот в том числе аминокислот со сложными боковыми радикалами.

    Он предложил аминировать бромзамещенные в -положении карбоновые кислоты. Для получения бромпроизводных он использовал, как например, в синтезе лейцина, арилированную или алкилированную малоновую кислоту:

    Но создать абсолютно универсальный метод Э. Фишеру не удалось. Были разработаны и более надежные реакции. Например, ученик Фишера Г. Лейкс предложил следующую модификацию для получения серина:

    Фишер также доказал, что белки состоят из остатков оптически активных аминокислот (см. стр.11). Это заставило его разработать новую номенклатуру оптически активных соединений, методы разделения и синтеза оптических изомеров аминокислот. Фишер также пришел к выводу, что в белках содержатся остатки L-форм оптически активных аминокислот, и он доказал это, впервые использовав принцип диастереоизомерии. Этот принцип заключался в следующем: к N-ацилпроизводному рацемической аминокислоты добавляли оптически активный алкалоид (бруцин, стрихнин, цинхонин, хинидин, хинин). В результате этого образовывались две стереоизомерные формы солей, обладающие различной растворимостью. После разделения этих диастереоизомеров алкалоид регенерировали и ацильную группу удаляли путем гидролиза.

    Фишер сумел разработать метод полного определения аминокислот в продуктах гидролиза белков: он переводил хлоргидраты эфиров аминокислот обработкой концентрированной щелочью на холоду в свободные эфиры, которые заметно не омылялись. Затем смесь этих эфиров подвергал фракционной перегонке и из полученных фракций выделял отдельные аминокислоты путем дробной кристаллизации.

    Новый метод анализа не только окончательно подтвердил, что белки состоят из аминокислотных остатков, но позволил уточнить и пополнить список встречающихся в белках аминокислот. Но все же количественные анализы не могли дать ответа на основной вопрос: каковы принципы строения молекулы белка. И Э.Фишер сформулировал одну из основных задач в изучении строения и свойств белка: разработка экспериментальные м е тоды синтеза соединений, основными компонентами которых были бы аминокисл о ты, соединенные пептидной связью.

    Таким образом Фишер поставил нетривиальную задачу - синтезировать новый класс соединений с целью установления принципов их строения.

    Задачу эту Фишер решил, и химики получили убедительные доказательства, что белки представляют собой полимеры аминокислот, соединенных пептидной связью:

    CO - CHR" - NH - CO - CHR"" - NH - CO CHR""" - NH -

    Это положение подтверждалось биохимическими доказательствами. Попутно выяснилось, что протеазы гидролизуют не все связи между аминокислотами с одинаковой скоростью. На их способность расщеплять пептидную связь влияли оптическая конфигурация аминокислот, заместители по азоту аминогруппы, длина цепи пептида, а также набор входящих в него остатков.

    Главным доказательством пептидной теории стал синтез модельных пептидов и сопоставление их с пептонами гидролизата белков. Результаты показали, что из белковых гидролизатов выделяются пептиды, идентичные синтезированным.

    В процессе выполнения этих исследований Э.Фишер и его ученик Э.Абдергальд- ен впервые разработали метод определения аминокислотной последовательности в белка. Сущность его заключалась в установлении природы аминокислотного остатка полипептида, имеющего свободную аминогруппу (N-концевую аминокислоту). Для этого они предложили блокировать в пептиде аминоконец -нафталин-сулфониловой группой, которая не отщепляется при гидролизе. Выделяя затем из гидролизата аминокислоту, меченую такой группой, можно было определить, какая из аминокислот была N-концевой.

    После исследований Э.Фишера стало ясно, что белки представляют собой полипептиды. Это было важное достижение, в том числе и для задач синтеза белков: стало ясно, что именно нужно синтезировать. Только после этих работ проблема синтеза белка приобрела определенную направленность и необходимую строгость.

    Говоря о работе Фишера в целом, следует отметить, что сам подход к исследованию был типичен скорее для наступающего XX века - он оперировал широким набором теоретических положений и методических приемов; его синтезы все менее и менее походили на искусство, основанное на интуиции, чем на точном знании, и приближались к созданию серий точных, почти технологических приемов.

    2. 6 Кризис пептидной теории

    В связи с применением новых физических и физико-химических методов исследований в начале 20-х гг. XX в. появились сомнения в том, что молекула белка представляет длинную полипептидную цепь. К гипотезе о возможности компактной укладки пептидных цепочек относились со скептицизмом. Все это потребовало пересмотра пептидной теории Э.Фишера.

    В 20-30-е гг. распространение получила дикетопиперазиновая теория. Согласно ей, центральная роль в построении структуры белка играют дикетопиперазивные кольца, образующиеся при циклизации двух аминокислотных остатков. Также предполагалось, что эти структуры составляют центральное ядро молекулы, к которому присоединены короткие пептиды или аминокислоты (“наполнители” циклического скелета основной структуры). Наиболее убедительные схемы участия дикетопиперазинов в построении структуры белка были представлены Н.Д.Зелинским и учениками Э.Фишера.

    Однако попытки синтеза модельных соединений, содержащих дикетопиперазины мало, что дали для химии белка впоследствии восторжествовала пептидная теория, однако эти работы оказали стимулирующее влияние на химию пиперазинов в целом.

    После пептидной и дикетопиперазивной теорий продолжались попытки доказать существование только пептидных структур в молекуле белка. При этом стремились представить себе не только тип молекулы, но и общие ее очертания.

    Оригинальную гипотезу высказал советский химик Д.Л.Талмуд. Он предположил, что пептидные цепи в составе белковых молекул свернуты в большие кольца, что в свою очередь стало шагом к созданию им представления о белковой глобуле.

    Одновременно появились данные, свидетельствующие о различном наборе аминокислот в различных белка. Но закономерности, которым подчиняется последовательность аминокислот в структуре белка, были не ясны.

    Первыми ответ на этот вопрос пытались дать М.Бергман и К.Ниман в разработанной ими гипотезе “перемежающихся частот”. Согласно ей последовательность аминокислотных остатков в белковой молекуле подчинялась числовым закономерностям, основы которых были выведены из принципов строения белковой молекулы фиброина шелка. Но этот выбор был неудачным, т.к. этот белок фибриллярный, строение же глобулярных белков подчиняется совсем другим закономерностям.

    По М.Бергману и К.Ниману, каждая аминокислота встречается в полипептидной цепи через определенной интервал или, как говорил М.Бергман, обладает определенной “периодичностью”.эта периодичность определяется природой аминокислотных остатков.

    Молекулу фиброина шелка они представляли себе следующим образом:

    GlyAlaGlyTyr GlyAlaGlyArg GlyAlaGlyx GlyAlaGlyx

    (GlyAlaGlyTyr GlyAlaGlyx GlyAlaGlyx GlyAlaGlyx) 12

    GlyAlaGlyTyr GlyAlaGlyx GlyAlaGlyx GlyAlaGlyArg

    (GlyAlaGlyTyr GlyAlaGlyx GlyAlaGlyx GlyAlaGlyx) 13

    Гипотеза Бергмана-Нимана оказала значительное влияние на развитие химии аминокислот большое количество работ было посвящено ее проверке.

    В заключение этой главы следует отметить, что к середине XX в. было накоплено достаточно доказательств справедливости пептидной теории, основные ее положения были дополнены и уточнены. Поэтому центр исследований белков в XX в. лежал уже области исследования и поиска методов синтеза белка искусственным путем. Эта задача была успешно решена, были разработаны надежные методы определения первичной структуры белка - последовательности аминокислот в пептидной цепи, разработаны методы химического (абиогенного) синтеза нерегулярных полипептидов (подробнее эти методы рассматриваются в гл.8, стр.36), в том числе методы автоматического синтеза полипептидов. Это позволило уже в 1962 г. крупнейшему английскому химику Ф.Сенгеру расшифровать структуру и синтезировать искусственным путем гормон инсулин, что ознаменовало новую эру в синтезе полипептидов функциональных белков.

    ГЛАВА 3. ХИМИЧЕСКИЙ СОСТАВ БЕЛКОВ

    3.1 Пептидная связь

    Белки представляют собой нерегулярные полимеры, построенные из остатков -аминокислот, общую формулу которых в водном растворе при значениях pH близких к нейтральным можно записать как NH 3 + CHRCOO - . Остатки аминокислот в белках соединены между собой амидной связью между -амино- и -карбоксильными группами. Пептидная связь между двумя -аминокислотными остатками обычно называется пептидной связью , а полимеры, построенные из остатков -аминокислот, соединенных пептидными связями, называют полипептидами. Белок как биологически значимая структура может представлять собой как один полипептид, так и несколько полипептидов, образующих в результате нековалентных взаимодействий единый комплекс.

    3.2 Элементный состав белков

    Изучая химический состав белков, необходимо выяснить, во-первых, из каких химических элементов они состоят, во-вторых, - строение их мономеров. Для ответа на первый вопрос определяют количественный и качественный состав химических элементов белка. Химический анализ показал наличие во всех белках углерода (50-55%), кислорода (21-23%), азота (15-17%), водорода (6-7%), серы (0,3-2,5%). В составе отдельных белков обнаружены также фосфор, йод, железо, медь и некоторые другие макро- и микроэлементы, в различных, часто очень малых количествах.

    Содержание основных химических элементов в белках может различаться, за исключением азота, концентрация которого характеризуется наибольшим постоянством и в среднем составляет 16%. Кроме того, содержание азота в других органических веществах мало. В соответствии с этим было предложено определять количество белка по входящему в его состав азоту. Зная, что 1г азота содержится в 6,25 г белка, найденное количество азота умножают коэффициент 6,25 и получают количество белка.

    Для определения химической природы мономеров белка необходимо решить две задачи: разделить белок на мономеры и выяснить их химический состав. Расщепление белка на его составные части достигается с помощью гидролиза - длительного кипячения белка с сильными минеральными кислотами (кислотный гидролиз) или основаниями (щелочной гидролиз) . Наиболее часто применяется кипячение при 110 С с HCl в течение 24 ч. На следующем этапе разделяют вещества, входящие в состав гидролизата. Для этой цели применяют различные методы, чаще всего - хроматографию (подробнее - глава “Методы исследования…”). Главным частью разделенных гидролизатов оказываются аминокислоты.

    3.3. Аминокислоты

    В настоящее время в различных объектах живой природы обнаружено до 200 различных аминокислот. В организме человека их, например, около 60. Однако в состав белков входят только 20 аминокислот, называемых иногда природными.

    Аминокислоты - это органические кислоты, у которых атом водорода -углеродного атома замещен на аминогруппу - NH 2 . Следовательно, по химической природе это -аминокислоты с общей формулой:

    Из этой формулы видно, что в состав всех аминокислот входят следующие общие группировки: - CH 2 , - NH 2 , - COOH. Боковые же цепи (радикалы - R ) аминокислот различаются. Как видно из Приложения I химическая природа радикалов разнообразна: от атома водорода до циклических соединений. Именно радикалы определяют структурные и функциональные особенности аминокислот.

    Все аминокислоты, кроме простейшей аминоуксусной к-ты глицина (NH 3 + CH 2 COO) имеют хиральный атом C и могут существовать в виде двух энантиомеров (оптических изомеров):

    В состав всех изученных в настоящее время белков входят только аминокислоты L-ряда, у которых, если рассматривать хиральный атом со стороны атома H, группы NH 3 + , COO и радикал R расположены по часовой стрелке. Необходимость при построении биологически значимой полимерной молекулы строить ее из строго определенного энантиомера очевидна - из рацемической смеси двух энантиомеров получилась бы невообразимо сложная смесь диастереоизомеров. Вопрос, почему жизнь на Земле основана на белках, построеных именно из L-, а не D--аминокислот, до сих пор остается интригующей загадкой. Следует отметить, что D-аминокислоты достаточно широко распространены в живой природе и, более того, входят в состав биологически значимых олигопептидов.

    Из двадцати основных -аминокислот строятся белки, однако остальные, достаточно разнообразные аминокислоты образуются из этих 20 аминокислотных остатков уже в составе белковой молекулы. Среди таких превращений следует в первую очередь отметить образование дисульфидных мостиков при окислении двух остатков цистеина в составе уже сформированных пептидных цепей. В результате образуется из двух остатков цистеина остаток диаминодикарбоновой кислоты цистина (см. Приложение I). При этом возникает сшивка либо внутри одной полипептидной цепи, либо между двумя различными цепями. В качестве небольшого белка, имеющего две полипептидные цепи, соединенный дисульфидными мостиками, а также сшивки внутри одной из полипептидных цепей:

    Важным примером модификации аминокислотных остатков является превращение остатков пролина в остатки гидроксипролина :

    Это превращение происходит, причем в значительном масштабе, при образовании важного белкового компонента соединительной ткани - коллагена .

    Еще одним весьма важным видом модификации белков является фосфорилирование гидроксогрупп остатков серина, треонина и тирозина, например:

    Аминокислоты в водном растворе находятся в ионизированном состоянии за счет диссоциации амино- и карбоксильных групп, входящих в состав радикалов. Другими словами, они являются амфотерными соединениями и могут существовать либо как кислоты (доноры протонов), либо как основания (акцепторы доноров).

    Все аминокислоты в зависимости от структуры разделены на несколько групп:

    Ациклические . Моноаминомонокарбоновые аминокислоты имеют в своем составе одну аминную и одну карбоксильную группы, в водном растворе они нейтральны. Некоторые из них имеют общие структурные особенности, что позволяет рассматривать их вместе:

    Глицин и аланин. Глицин (гликокол или аминоуксусная к-та) является оптически неактивным - это единственная аминокислота, не имеющая энатиомеров. Глицин участвует в образовании нуклеиновых и желчных к-т, гема, необходим для обезвреживания в печени токсичных продуктов. Аланин используется организмом в различных процессах обмена углеводов и энергии. Его изомер -аланин является составной частью витамина пантотеновой к-ты, коэнзима А (КоА), экстрактивных веществ мышц.

    Серин и треонин. Они относятся к группе гидрооксикислот, т.к. имеют гидроксильную группу. Серин входит в состав различных ферментов, основного белка молока - казеина, а также в состав многих липопротеинов. Треонин участвует в биосинтезе белка, являясь незаменимой аминокислотой.

    Цистеин и метионин. Аминокислоты, имеющие в составе атом серы. Значение цистеина определяется наличием в ее составе сульфгидрильной (- SH) группы, которая придает ему способность легко окисляться и защищать организм о веществ с высокой окислительной способностью (при лучевом поражении, отравлении фосфором). Метионин характеризуется наличием легко подвижной метильной группы, использующейся для синтеза важных соединений в организме (холина, креатина, тимина, адреналина и др.)

    Валин, лейцин и изолейцин. Представляют собой разветвленные аминокислоты, которые активно участвуют в обмене веществ и не синтезируются в организме.

    Моноаминодикарбоновые аминокислоты имеют одну аминную и две карбоксильные группы и в водном растворе дают кислую реакцию. К ним относятся аспарагиновая и глутаминовая к-ты, аспарагин и глутамин. Они входят в состав тормозных медиаторов нервной системы.

    Диаминомонокарбоновые аминокислоты в водном растворе имеют щелочную реакцию за сет наличия двух аминных групп. Относящийся к ним лизин необходим для синтеза гистонов а также в ряд ферментов. Аргинин участвует в синтезе мочевины, креатина.

    Циклические . Эти аминокислоты имеют в своем составе ароматическое или гетероциклическое ядро и, как правило, не синтезируется в организме человека и должны поступать с пищей. Они активно участвуют в разнообразных обменных процессах. Так фенил-аланин служит основным источником синтеза тирозина - предшественника ряда биологически важных веществ: гормонов (тироксина, адреналина), некоторых пигментов. Триптофан помимо участия в синтезе белка, служит компонентом витамина PP, серотонина, триптамина, ряда пигментов. Гистидин необходим для синтеза белков, является предшественником гистамина, влияющего на кровяное давление и секрецию желудочного сока.

    ГЛАВА 4. СТРУКТУРА

    При изучении состава белков было установлено, что все они построены по единому принципу и имеют четыре уровня организации: первичную, вторичную, третичную, а отдельные из них и четвертичную структуры.

    4.1 Первичная структура

    Представляет собой линейную цепь аминокислот, расположенных в определенной последовательности и соединенных между собой пептидными связями. Пептидная связь образуется за счет -карбоксильной группы одной аминокислоты и -аминной группы другой:

    Пептидная связь вследствие p, -сопряжения -связи карбонильной группы и р-орбитали атома N, на котором находится не поделенная пара электронов, не может рассматриваться как одинарная и вращение вокруг нее практически отсутствует. По этой же причине хиральный атом C и карбонильный атом C k любого i-го аминокислотного остатка пептидной цепи и атомы N и С (i+1)-го остатка находятся в одной плоскости. В этой же плоскости находятся карбонильный атом О и амидный атом Н (однако накопленный при изучении структуры белков материал показывает, что это утверждение не совсем строго: атомы, связанные с пептидным атомом азота, находятся не в одной плоскости с ним, а образуют трехгранную пирамиду с углами между связями, очень близкими к 120. Поэтому между плоскостями, образованными атомами C i , C i k , O i и N i +1 , H i +1 , C i +1 , существует некоторый угол, отличающийся от 0. Но, как правило, он не превышает 1 и не играет особой роли). Поэтому геометрически полипептидную цепочку можно рассматривать как образованную такими плоскими фрагментами, содержащими каждый по шесть атомов. Взаимное расположение этих фрагментов, как и всякое взаимное расположение двух плоскостей, должно определятся двумя углами. В качестве таковых принято брать торсионные углы, характеризующие вращения вокруг -связей N C и C C k .

    Геометрия любой молекулы определяется тремя группами геометрических характеристик ее химических связей - длинами связей, валентными углами и торсионными углами между связями, примыкающими к соседним атомам. Первые две группы в решающей мере определяются природой участвующих атомов и образующихся связей. Поэтому пространственная структура полимеров в основном определяется торсионными углами между звеньями полимерного остова молекул, т.е. конформацией полимерной цепи. То р сионный угол , т.е. угол поворота связи А-В вокруг связи В-С относительно связи С- D , определяется как угол между плоскостями, содержащими атомы А, В, С и атомы B , C , D .

    В такой системе возможен случай, когда связи А-В и С-D расположены параллельно и находятся по одну сторону от связи В-С. Если рассматривать эту систему вдоль св я зи В-С, то связь А-В как бы заслоняет связь C - D , поэтому такая конформация наз ы вается заслоненной. Согласно рекомендациям международных союзов химии IUPAC (International Union of Pure and Applied Chemistry) и IUB (International Union of Biochemistry), угол между плоскостями ABC и BCD считается положительным, если для приведения конформации в заслоненное состояние путем поворота на угол не выше 180 ближнюю к наблюдателю связь нужно поворачивать по часовой стрелке. Если эту связь для получения заслоненной конформации нужно поворачивать против часовой стрелки, то угол считается отрицательным. Можно заметить, что это определение не зависит от того, какая из связей находится ближе к наблюдателю.

    При этом, как видно из рисунка, ориентация фрагмента, содержащего атомы C i -1 и C i [(i-1)-й фрагмент], и фрагмента, содержащего атомы C i и C i +1 (i-й фрагмент), определяется торсионными углами, соответствующими вращению вокруг связи N i C i и связи C i C i k . Эти углы принято обозначать как и, в приведенном случае соответственно i и i . Их значениями для всех мономерных звеньев полипептидной цепи в основном определяется геометрия этой цепи. Никаких однозначных величин ни для значения каждого из этих углов, ни для их комбинаций не существует, хотя на те и на другие накладываются ограничения, определяемые как свойствами самих пептидных фрагментов, так и природой боковых радикалов, т.е. природой аминокислотных остатков.

    К настоящему времени установлены последовательности аминокислот для нескольких тысяч различных белков. Запись структуры белков в виде развернутых структурных формул громоздка и не наглядна. Поэтому используется сокращенная форма записи - трехбуквенная или однобуквенная (молекула вазопрессина):

    При записи аминокислотной последовательности в полипептидных или олигопептидных цепях с помощью сокращенной символики предполагается, если это особо не оговорено, что -аминогруппа находится слева, а -карбоксильная группа - справа. Соответствующие участки полипептидной цепи называют N-концом (аминным концом) и С-концом (карбоксильным концом), а аминокислотные остатки - соответственно N-концевым и С-концевым остатками.

    4.2 Вторичная структура

    Фрагменты пространственной структуры биополимер, имеющие периодическое строение полимерного остова, рассматривают как элементы вторичной структуры.

    Если на протяжении некоторого участка цепи однотипные углы, о которых говорилось на стр.15, приблизительно одинаковы, то структура полипептидной цепи приобретает периодический характер. Существует два класса таких структур - спиральные и растянутые (плоские или складчатые).

    Спиральной считается структура, у которой все однотипные атомы лежат на одной винтовой линии. При этом спираль считается правой, если при наблюдении вдоль оси спирали она удаляется от наблюдателя по часовой стрелке, и левой - если удаляется против часовой стрелки. Полипептидная цепь имеет спиральную конформацию, если все атомы C находятся на одной винтовой линии, все карбонильные атомы C k - на другой, все атомы N - на третьей, причем шаг спирали для всех трех групп атомов должен быть одинаков. Одинаковым должно быть и число атомов, приходящихся на один виток спирали, независимо от того, идет ли речь об атомах C k , C или N. Расстояние же до общей винтовой линии для каждого из этих трех типов атомов свое.

    Главными элементами вторичной структуры белков являются -спирали и -складки.

    Спиральные структуры белка. Для полипептидных цепей известно несколько различных типов спиралей. Среди них наиболее распространена правая -спираль. Идеальная -спираль имеет шаг 0,54 нм и число однотипных атомов на один виток спирали 3,6, что означает полную периодичность на пяти витках спирали через каждые 18 аминокислотных остатков. Значения торсионных углов для идеальной -спирали = - 57 = - 47 , а расстояния от атомов, образующих полипептидную цепь, до оси спирали составляет для N 0,15 нм, для C 0,23 нм, для C k 0,17 нм. Любая конформация существует при условии, что имеются факторы, стабилизирующие ее. В случае -спирали такими факторами являются водородные связи, образуемые каждым карбонильным атомом (i+4)-го фрагмента. Важным фактором стабилизации -спирали также является параллельная ориентация дипольных моментов пептидных связей.

    Складчатые структуры белка. Одним из распространенных примеров складчатой периодической структуры белка являются т.н. -складки , состоящие из двух фрагментов, каждый из которых представлен полипептидом.

    Складки также стабилизируются водородными связями между атомом водорода аминной группы одного фрагмента и атомом кислорода карбоксильной группы другого фрагмента. При этом фрагменты могут иметь как параллельную, так и антипараллельную ориентацию относительно друг друга.

    Структура, образующаяся в результате таких взаимодействий, представляет собой гофрированную структуру. Это сказывается на значениях торсионных углов и. Если в плоской, полностью растянутой структуре они должны были бы составить 180, то в реальных -слоях они имеют значения = - 119 и = + 113. Для того чтобы два участка полипептидной цепи располагались в ориентации, благоприятствующей образованию -складок, между ними должен существовать участок, имеющий структуру, резко отличающийся от периодической.

    4.2.1 Факторы, влияющие на образование вторичной структуры

    Структура определенного участка полипептидной цепи существенно зависит от структуры молекулы в целом. Факторы, влияющие на формирование участков с определенной вторичной структурой, весьма многообразны и далеко не во всех случаях полностью выявлены. Известно, что ряд аминокислотных остатков предпочтительно встречается в -спиральных фрагментах, ряд других - в -складках, некоторые аминокислоты - преимущественно в участках, лишенных периодической структуры. Вторичная структура в значительной степени определяется первичной структурой. В некоторых случаях физический смысл такой зависимости может быть понят из стереохимического анализа пространственной структуры. Например, как видно из рисунка в -спирали сближены не только боковые радикалы соседних вдоль цепи аминокислотных остатков, но и некоторые пары остатков, находящихся на соседних витках спирали, в первую очередь каждый (i+1)-й остаток с (i+4)-м и с (i+5)-м. Поэтому в положениях (i+1) и (i+2), (i+1) и (i+4), (i+1) и (i+5) -спиралей редко одновременно встречается два объемных радикала, таких, например, как боковые радикалы тирозина, триптофана, изолейцина. Еще менее совместимо со структурой спирали одновременное наличие трех объемных остатков в положениях (i+1), (i+2) и (i+5) или (i+1), (i+4) и (i+5). Поэтому такие комбинации аминокислот в -спиральных фрагментах являются редким исключением.

    4.3 Третичная структура

    Под этим термином понимают полную укладку в простанстве всей полипептидной цепи, включая укладку боковых радикалов. Полное представление о третичной структуре дают координаты всех атомов белка. Благодаря огромным успехом рентгеноструктурного анализа такие данные, за исключением координат атомов водорода получены для значительного числа белков. Это огромные массивы информации, хранящиеся в специальных банках данных на машиночитаемых носителях, и их обработка немыслима без применения быстродействующих компьютеров. Полученные на компьютерах координаты атомов дают полную информацию о геометрии полипептидной цепи, в том числе значения торсионных углов, что позволяет выявить спиральную структуру, -складки или нерегулярные фрагменты. Примером такого исследовательского подхода может служить следующая пространственная модель структуры фермента фосфоглицераткиназы:

    Общая схема строения фосфоглицераткиназы. Для наглядности -спиральные участки представлены в виде цилиндров, а -складки - в виде лент со стрелкой, указывающей направление цепи от N-конца к С-концу. Линии - нерегулярные участки, соединяющие структурированные фрагменты.

    Изображение полной структуры даже небольшой белковой молекулы на плоскости, будь то страница книги или экран дисплея мало информативно из-за чрезвычайно сложного строения объекта. Чтобы исследователь мог наглядно представлять простанственное строение молекул сложных веществ, используют методы трехмерной компьютерной графики, позволяющей выводить на дисплей отдельные части молекул и манипулировать с ними, в частности поворачивать их в нужных ракурсах.

    Третичная структура формируется в результате нековалентных взаимодействий (электростатические, ионные, силы Ван-дер-Ваальса и др.) боковых радикалов, обрамляющих -спирали и -складки, и непериодических фрагментов полипептидной цепи. Среди связей, удерживающих третичную структуру следует отметить:

    а) дисульфидный мостик (- S - S -)

    б) сложноэфирный мостик (между карбоксильной группой и гидроксильной группой)

    в) солевой мостик (между карбоксильной группой и аминогруппой)

    г) водородные связи.

    В соответствии с формой белковой молекулы, обусловленной третичной структурой, выделяют следующие группы белков:

    Глобулярные белки. Пространственная структура этих белков в грубом приближении может быть представлена в виде шара или не слишком вытянутого эллипсоида - глоб у лы . Как правило, значительная часть полипептидной цепи таких белков формирует -спирали и -складки. Соотношение между ними может быть самым различным. Например, у миоглобина (подробнее о нем на стр.28) имеется 5 -спиральных сегментов и нет ни одной -складки. У иммуноглобулинов (подробнее на стр.42), наоборот, основными элементами вторичной структуры являются -складки, а -спирали вообще отсутствуют. В вышеприведенной структуре фосфоглицераткиназы и те и другие типы структур представлены примерно одинаково. В некоторых случаях, как это видно на примере фосфоглицераткиназы, отчетливо просматриваются две или более четко разделеннные в пространстве (но тем не менее, конечно, связанные пептидными мостиками) части - домены. Зачастую различные функциональные зоны белка разнесены по разным доменам.

    Фибриллярные белки. Эти белки имеют вытянутую нитевидную форму, они выполняют в организме структурную функцию. В первичной структуре они имеют повторяющиеся участки и формируют достаточно однотипную для всей полипептидной цепи вторичнкю структуру. Так, белок -креатин (основной белковый компонент ногтей, волос, кожи) построен из протяженных -спиралей. Фиброин шелка состоит из периодически повторяющихся фрагментов Gly - Ala - Gly - Ser , образующими -складки. Существуют менее распростаненные элементы вторичной структуры, пример - полипептидные цепи коллагена, образующие левые спирали с параметрами, резко отличающимися от параметров -спиралей. В коллагеновых волокнах три спиральные полипептидные цепи скручены в единую правую суперспираль:

    4.4 Четвертичная структура

    В большинстве случаев для функционирования белков необходимо, чтобы несколько полимерных цепей были объединены в единый комплекс. Такой комплекс также рассматривается как белок, состоящий из нескольких субъединиц . Субъединичная структура часто фигурирует в научной литературе как четвертичная структура.

    Белки, состоящие из нескольких субъединиц, широко распространены в природе. Классический пример - четвертичная структура гемоглобина (подробнее - стр.26). субъединицы принято обозначать греческими буквами. У гемоглобина имеется по две и субъединицы. Наличие нескольких субъединиц важно в функциональном отношении - это увеличивает степень насыщения кислородом. Четвертичную структуру гемоглобина обозначают как 2 2 .

    Субъединичное строение свойственно многим ферментам, в первую очередь тем, которые выполняют сложные функции. Например, РНК-полимераза из E . coli имеет субъединичную структуру 2 ", т.е. построен из четырех разнотипных субъединиц, причем -субъединица продублирована. Этот белок выполняет сложные и разнообразные функции - инициирует ДНК, связывает субстраты - рибонуклеозидтрифосфаты, а также переносит нуклеотидные остатки на растущую полирибонуклеотидную цепь и некоторые другие функции.

    Работа многих белков подвержена т.н. аллостерической регуляции - специальные соединения (эффекторы) “выключают” или “включают” работу активного центра фермента. Такие ферменты имеют специальные участки опознавания эффектора. И даже существуют специальные регуляторные субъединицы , в состав которых в том числе входят указанные участки. Классический пример - ферменты протеинкиназы, катализирующие перенос остатка фосфорной к-ты от молекулы АТФ на белки-субстраты.

    ГЛАВА 5. СВОЙСТВА

    Белки имеют высокую молекулярную массу, некоторые растворимы в воде, способны к набуханию, характеризуются оптической активностью, подвижностью в электрическом поле и некоторыми другими свойствами.

    Белки активно вступают в химические реакции. Это свойство связано с тем, что аминокислоты, входящие в состав белков, содержат разные функциональные группы, способные реагировать с другими веществами. Важно, что такие взаимодействия происходят и внутри белковой молекулы, в результате чего образуется пептидная, водородная дисульфидная и другие виды связей. К радикалам аминокислот, а следовательно и белков, могут присоединяться различные соединения и ионы, что обеспечивает их транспорт по крови.

    Белки являются высокомолекулярными соединениями. Это полимеры, состоящие из сотен и тысяч аминокислотных остатков - мономеров. Соответственно и молекулярная масса белков находится в пределах 10 000 - 1 000 000. Так, в составе рибонуклеазы (фермента, расщепляющего РНК) содержится 124 аминокислотных остатка и ее молекулярная масса составляет примерно 14 000. Миоглобин (белок мышц), состоящий из 153 аминокислотных остатков, имеет молекулярную массу 17 000, а гемоглобин - 64 500 (574 аминокислотных остатка). Молекулярные массы других белков более высокие: -глобулин (образует антитела) состоит из 1250 аминокислот и имеет молекулярную массу около 150 000, а молекулярная масса фермента глутаматдегидрогеназы превышает 1 000 000.

    Определение молекулярной массы проводится различными методами: осмометрическим, гельфильтрационным, оптическим и др. однако наиболее точным является метод седиментации, предложенный Т. Сведбергом. Он основан на том, что при ультрацентрифугировании ускорением до 900 000 g скорость осаждения белков зависит от их молекулярной массы.

    Важнейшим свойством белков является их способность проявлять как кислые так и основные, то есть выступать в роли амфотерных электролитов. Это обеспечивается за счет различных диссоциирующих группировок, входящих в состав радикалов аминокислот. Например, кислотные свойства белку придают карбоксильные группы аспарагиновой глутаминовой аминокислот, а щелочные - радикалы аргинина, лизина и гистидина. Чем больше дикарбоновых аминокислот содержится в белке, тем сильнее проявляются его кислотные свойства и наоборот.

    Эти же группировки имеют и электрические заряды, формирующие общий заряд белковой молекулы. В белках, где преобладают аспарагиновая и глутаминовая аминокислоты, заряд белка будет отрицательным, избыток основных аминокислот придает положительный заряд белковой молекуле. Вследствие этого в электрическом поле белки будут передвигаться к катоду или аноду в зависимости от величины их общего заряда. Так, в щелочной среде (рН 7 - 14) белок отдает протон и заряжается отрицательно, тогда как в кислой среде (рН 1 - 7) подавляется диссоциация кислотных групп и белок становится катионом.

    Таким образом, фактором, определяющим поведение белка как катиона или аниона, является реакция среды, которая определяется концентрацией водородных ионов и выражается величиной рН. Однако при определенных значениях рН число положительных и отрицательных зарядов уравнивается и молекула становится электронейтральной, т.е. она не будет перемещаться в электрическом поле. Такое значение рН среды определяется как изоэлектрическая точка белков. При этом белок находится в наименее устойчивом состоянии и при незначительных изменениях рН в кислую или щелочную сторону легко выпадает в осадок. Для большинства природных белков изоэлектрическая точка находится в слабокислой среде (рН 4,8 - 5,4), что свидетельствует о преобладании в их составе дикарбоновых аминокислот.

    Свойство амфотерности лежит в основе буферных свойств белков и их участии в регуляции рН крови. Величина рН крови человека отличается постоянством и находится в пределах 7,36 - 7,4 , несмотря на различные вещества кислого или основного характера, регулярно поступающие с пищей или образующиеся в обменных процессах - следовательно существуют специальные механизмы регуляции кислотно-щелочного равновесия внутренней среды организма. К таким системам относится рассматриваемая в гл. “ Классификация” гемоглобиновая буферная система (стр.28). Изменение рН крови более чем на 0,07 свидетельствует о развитии патологического процесса. Сдвиг рН в кислую сторону называется ацидозом, а в щелочную - алкалозом.

    Важное значение для организма имеет способность белков адсорбироватьь на своей поверхности некоторые вещества и ионы (гормоны, витамины, железо, медь), которые либо плохо растворимы в воде, либо являются токсичными (билирубин, свободные жирные кислоты). Белки транспортируют их по крови к местам дальнейших превращений или обезвреживания.

    Водные растворы белков имеют свои особенности. Во-первых, белки обладают большим сродством к воде, т.е. они гидрофильны. Это значит, что молекулы белка, как заряженные частицы, притягивают к себе диполи воды, которые располагаются вокруг белковой молекулы и образуют водную или гидратную оболочку. Эта оболочка предохраняет молекулы белка от склеивания и выпадения в осадок. Величина гидратной оболочки зависит от структуры белка. Например, альбумины более легко связываются с молекулами воды и имеют относительно большую водную оболочку, тогда как глобулины, фибриноген присоединяют воду хуже, и гидратная оболочка и них меньше. Таким образом, устойчивость водного раствора белка определяется двумя факторами: наличием заряда белковой молекулы и находящейся вокруг нее водной оболочки. При удалении этих факторов белок выпадает в осадок. Данный процесс может быть обратимым и необратимым.

    ...

    Подобные документы

      Белки (протеины) – высоко молекулярные, азотосодержащие природные органические вещества, молекулы которых построены из аминокислот. Строение белков. Классификация белков. Физико-химические свойства белков. Биологические функции белков. Фермент.

      реферат , добавлен 15.05.2007

      Основные особенности метаболических процессов. Обмен веществ и энергии. Общая характеристика, классификация, функции, химический состав и свойства белков, их биологическая роль в построении живой материи. Структурные и сложные белки. Способы их осаждения.

      презентация , добавлен 24.04.2013

      Физические и химические свойства, цветные реакции белков. Состав и строение, функции белков в клетке. Уровни структуры белков. Гидролиз белков, их транспортная и защитная роль. Белок как строительный материал клетки, его энергетическая ценность.

      реферат , добавлен 18.06.2010

      Физические, биологические и химические свойства белков. Синтез и анализ белков. Определение первичной, вторичной, третичной и четвертичной структуры белков. Денатурация, выделение и очистка белков. Использование белков в промышленности и медицине.

      реферат , добавлен 10.06.2015

      Белки - высокомолекулярные органические соединения, их аминокислотный состав. Определение свойств белков их составом и структурой белковой молекулы. Характеристика основных функций белков. Органоиды клетки и их функции. Клеточное дыхание и его строение.

      контрольная работа , добавлен 24.06.2012

      Понятие и структура белков, аминокислоты как их мономеры. Классификация и разновидности аминокислот, характер пептидной связи. Уровни организации белковой молекулы. Химические и физические свойства белков, методы их анализа и выполняемые функции.

      презентация , добавлен 14.04.2014

      Биологическая роль воды. Функции минеральных солей. Простые и сложные липиды. Уровни организации белков. Строительная, энергетическая, запасающая и регуляторная функции липидов. Структурная, каталитическая, двигательная, транспортная функции белков.

      презентация , добавлен 21.05.2015

      Аминокислотный состав белков в организмах, роль генетического кода. Комбинации из 20 стандартных аминокислот. Выделение белков в отдельный класс биологических молекул. Гидрофильные и гидрофобные белки. Принцип построения белков, уровень их организации.

      творческая работа , добавлен 08.11.2009

      Основные элементы и химический состав мышечной ткани. Виды белков саркоплазмы и миофибрилл, их содержание к общему количеству белков, молекулярная масса, распределение в структурных элементах мышцы. Их функции и роль организме. Строение молекулы миозина.

      презентация , добавлен 14.12.2014

      Белки как источники питания, их основные функции. Аминокислоты, участвующие в создании белков. Строение полипептидной цепи. Превращения белков в организме. Полноценные и неполноценные белки. Структура белка, химические свойства, качественные реакции.