Системы рациональных уравнений по математике. Алгоритм решения рациональных уравнений Определение рационального уравнения с двумя переменными

§ 1 Целое и дробное рациональные уравнение

В этом уроке разберем такие понятия, как рациональное уравнение, рациональное выражение, целое выражение, дробное выражение. Рассмотрим решение рациональных уравнений.

Рациональным уравнением называют уравнение, в котором левая и правая части являются рациональными выражениями.

Рациональные выражения бывают:

Дробные.

Целое выражение составлено из чисел, переменных, целых степеней с помощью действий сложения, вычитания, умножения, а также деления на число, отличное от нуля.

Например:

В дробных выражениях есть деление на переменную или выражение с переменной. Например:

Дробное выражение не при всех значениях входящих в него переменных имеет смысл. Например, выражение

при х = -9 не имеет смысла, так как при х = -9 знаменатель обращается в нуль.

Значит, рациональное уравнение может быть целым и дробным.

Целое рациональное уравнение - это рациональное уравнение, в котором левая и правая части - целые выражения.

Например:

Дробное рациональное уравнение - это рациональное уравнение, в котором или левая, или правая части - дробные выражения.

Например:

§ 2 Решение целого рационального уравнения

Рассмотрим решение целого рационального уравнения.

Например:

Умножим обе части уравнения на наименьший общий знаменатель знаменателей входящих в него дробей.

Для этого:

1. найдем общий знаменатель для знаменателей 2, 3, 6. Он равен 6;

2. найдем дополнительный множитель для каждой дроби. Для этого общий знаменатель 6 делим на каждый знаменатель

дополнительный множитель для дроби

дополнительный множитель для дроби

3. умножим числители дробей на соответствующие им дополнительные множители. Таким образом, получим уравнение

которое равносильно данному уравнению

Слева раскроем скобки, правую часть перенесем налево, изменив знак слагаемого при переносе на противоположный.

Приведем подобные члены многочлена и получим

Видим, что уравнение линейное.

Решив его, найдем, что х = 0,5.

§ 3 Решение дробного рационального уравнения

Рассмотрим решение дробного рационального уравнения.

Например:

1.Умножим обе части уравнения на наименьший общий знаменатель знаменателей входящих в него рациональных дробей.

Найдем общий знаменатель для знаменателей х + 7 и х - 1.

Он равен их произведению (х + 7)(х - 1).

2.Найдем дополнительный множитель для каждой рациональной дроби.

Для этого общий знаменатель (х + 7)(х - 1) делим на каждый знаменатель. Дополнительный множитель для дроби

равен х - 1,

дополнительный множитель для дроби

равен х+7.

3.Умножим числители дробей на соответствующие им дополнительные множители.

Получим уравнение (2х - 1)(х - 1) = (3х + 4)(х + 7), которое равносильно данному уравнению

4.Слева и справа умножим двучлен на двучлен и получим следующее уравнение

5.Правую часть перенесем налево, изменив знак каждого слагаемого при переносе на противоположный:

6.Приведем подобные члены многочлена:

7.Можно обе части разделить на -1. Получим квадратное уравнение:

8.Решив его, найдем корни

Так как в уравнении

левая и правая части - дробные выражения, а в дробных выражениях при некоторых значениях переменных знаменатель может обратиться в нуль, то необходимо проверить, не обращается ли в нуль при найденных х1 и х2 общий знаменатель.

При х = -27 общий знаменатель (х + 7)(х - 1) не обращается в нуль, при х = -1 общий знаменатель также не равен нулю.

Следовательно, оба корня -27 и -1 являются корнями уравнения.

При решении дробного рационального уравнения лучше сразу указать область допустимых значений. Исключить те значения, при которых общий знаменатель обращается в нуль.

Рассмотрим еще один пример решения дробного рационального уравнения.

Например, решим уравнение

Знаменатель дроби правой части уравнения разложим на множители

Получим уравнение

Найдем общий знаменатель для знаменателей (х - 5), х, х(х - 5).

Им будет выражение х(х - 5).

теперь найдем область допустимых значений уравнения

Для этого общий знаменатель приравняем к нулю х(х - 5) = 0.

Получим уравнение, решив которое, найдем, что при х = 0 или при х = 5 общий знаменатель обращается в нуль.

Значит, х = 0 или х = 5 не могут быть корнями нашего уравнения.

Теперь можно найти дополнительные множители.

Дополнительным множителем для рациональной дроби

дополнительным множителем для дроби

будет (х - 5),

а дополнительный множитель дроби

Числители умножим на соответствующие дополнительные множители.

Получим уравнение х(х - 3) + 1(х - 5) = 1(х + 5).

Раскроем скобки слева и справа, х2 - 3х + х - 5 = х + 5.

Перенесем слагаемые справа налево, изменив знак переносимых слагаемых:

Х2 - 3х + х - 5 - х - 5 = 0

И после приведения подобных членов получим квадратное уравнение х2 - 3х - 10 = 0. Решив его, найдем корни х1 = -2; х2 = 5.

Но мы уже выяснили, что при х = 5 общий знаменатель х(х - 5) обращается в нуль. Следовательно, корнем нашего уравнения

будет х = -2.

§ 4 Краткие итоги урока

Важно запомнить:

При решении дробных рациональных уравнений надо поступить следующим образом:

1.Найти общий знаменатель дробей входящих в уравнение. При этом если знаменатели дробей можно разложить на множители, то разложить их на множители и затем найти общий знаменатель.

2.Умножить обе части уравнения на общий знаменатель: найти дополнительные множители, умножить числители на дополнительные множители.

3.Решить получившееся целое уравнение.

4.Исключить из его корней те, которые обращают в нуль общий знаменатель.

Список использованной литературы:

  1. Макарычев Ю.Н., Н. Г. Миндюк, Нешков К.И., Суворова С.Б. / Под редакцией Теляковского С.А. Алгебра: учебн. для 8 кл. общеобразоват. учреждений. - М.: Просвещение, 2013.
  2. Мордкович А.Г. Алгебра. 8 кл.: В двух частях. Ч.1: Учеб. для общеобразоват. учреждений. - М.: Мнемозина.
  3. Рурукин А.Н. Поурочные разработки по алгебре: 8 класс.- М.: ВАКО, 2010.
  4. Алгебра 8 класс: поурочные планы по учебнику Ю.Н. Макарычева, Н.Г. Миндюк, К.И. Нешкова, С.Б. Суворовой / Авт.-сост. Т.Л. Афанасьева, Л.А. Тапилина. -Волгоград: Учитель, 2005.

Уравнение» мы ввели выше в § 7. Сначала напомним, что такое рациональное выражение. Это - алгебраическое выражение, составленное из чисел и переменной х с помощью операций сложения, вычитания, умножения, деления и возведения в степень с натуральным показателем.

Если r(х) - рациональное выражение, то уравнение r(х) = 0 называют рациональным уравнением.

Впрочем, на практике удобнее пользоваться несколько более широким толкованием термина «рациональное уравнение»: это уравнение вида h(x) = q(x), где h(x) и q(x) - рациональные выражения.

До сих пор мы могли решить не любое рациональное уравнение, а только такое, которое в результате различных преобразований и рассуждений сводилось к линейному уравнению . Теперь наши возможности значительно больше: мы сумеем решить рациональное уравнение, которое сводится не только к линейно-
му, но и к квадратному уравнению.

Напомним, как мы решали рациональные уравнения раньше, и попробуем сформулировать алгоритм решения.

Пример 1. Решить уравнение

Решение. Перепишем уравнение в виде

При этом, как обычно, мы пользуемся тем, что равенства А = В и А - В = 0 выражают одну и ту же зависимость между А и В. Это и позволило нам перенести член в левую часть уравнения с противоположным знаком.

Выполним преобразования левой части уравнения. Имеем


Вспомним условия равенства дроби нулю: тогда, и только тогда, когда одновременно выполняются два соотношения:

1) числитель дроби равен нулю (а = 0); 2) знаменатель дроби отличен от нуля ).
Приравняв нулю числитель дроби в левой части уравнения (1), получим

Осталось проверить выполнение второго указанного выше условия. Соотношение означает для уравнения (1), что . Значения х 1 = 2 и х 2 = 0,6 указанным соотношениям удовлетворяют и потому служат корнями уравнения (1), а вместе с тем и корнями заданного уравнения.

1) Преобразуем уравнение к виду

2) Выполним преобразования левой части этого уравнения:

(одновременно изменили знаки в числителе и
дроби).
Таким образом, заданное уравнение принимает вид

3) Решим уравнение х 2 - 6x + 8 = 0. Находим

4) Для найденных значений проверим выполнение условия . Число 4 этому условию удовлетворяет, а число 2 - нет. Значит, 4 - корень заданного уравнения, а 2 - посторонний корень.
О т в е т: 4.

2. Решение рациональных уравнений методом введения новой переменной

Метод введения новой переменной вам знаком, мы не раз им пользовались. Покажем на примерах, как он применяется при решении рациональных уравнений.

Пример 3. Решить уравнение х 4 + х 2 - 20 = 0.

Решение. Введем новую переменную у = х 2 . Так как х 4 = (х 2) 2 = у 2 , то заданное уравнение можно переписать в виде

у 2 + у - 20 = 0.

Это - квадратное уравнение, корни которого найдем, используя известные формулы ; получим у 1 = 4, у 2 = - 5.
Но у = х 2 , значит, задача свелась к решению двух уравнений:
x 2 =4; х 2 =-5.

Из первого уравнения находим второе уравнение не имеет корней.
Ответ: .
Уравнение вида ах 4 + bx 2 +c = 0 называют биквадратным уравнением («би» - два, т. е. как бы «дважды квадратное» уравнение). Только что решенное уравнение было именно биквадратным. Любое биквадратное уравнение решается так же, как уравнение из примера 3: вводят новую переменную у = х 2 , решают полученное квадратное уравнение относительно переменной у, а затем возвращаются к переменной х.

Пример 4. Решить уравнение

Решение. Заметим, что здесь дважды встречается одно и то же выражение х 2 + Зх. Значит, имеет смысл ввести новую переменную у = х 2 + Зх. Это позволит переписать уравнение в более простом и приятном виде (что, собственно говоря, и составляет цель введения новой переменной - и запись упроща
ется, и структура уравнения становится более ясной):

А теперь воспользуемся алгоритмом решения рационального уравнения.

1) Перенесем все члены уравнения в одну часть:

= 0
2) Преобразуем левую часть уравнения

Итак, мы преобразовали заданное уравнение к виду


3) Из уравнения - 7у 2 + 29у -4 = 0 находим (мы с вами уже решили довольно много квадратных уравнений, так что всегда приводить в учебнике подробные выкладки, наверное, не стоит).

4) Выполним проверку найденных корней с помощью условия 5 (у - 3) (у + 1). Оба корня этому условию удовлетворяют.
Итак, квадратное уравнение относительно новой переменной у решено:
Поскольку у = х 2 + Зх, а у, как мы установили, принимает два значения: 4 и , - нам еще предстоит решить два уравнения: х 2 + Зх = 4; х 2 + Зх = . Корнями первого уравнения являются числа 1 и - 4, корнями второго уравнения - числа

В рассмотренных примерах метод введения новой переменной был, как любят выражаться математики, адекватен ситуации, т. е. хорошо ей соответствовал. Почему? Да потому, что одно и то же выражение явно встречалось в записи уравнения несколько раз и был резон обозначить это выражение новой буквой. Но так бывает не всегда, иногда новая переменная «проявляется» только в процессе преобразований. Именно так будет обстоять дело в следующем примере.

Пример 5. Решить уравнение
х(х- 1)(x-2)(x-3) = 24.
Решение. Имеем
х(х - 3) = х 2 - 3х;
(х - 1)(x - 2) = x 2 -Зx+2.

Значит, заданное уравнение можно переписать в виде

(x 2 - 3x)(x 2 + 3x + 2) = 24

Вот теперь новая переменная «проявилась»: у = х 2 - Зх.

С ее помощью уравнение можно переписать в виде у (у + 2) = 24 и далее у 2 + 2у - 24 = 0. Корнями этого уравнения служат числа 4 и -6.

Возвращаясь к исходной переменной х, получаем два уравнения х 2 - Зх = 4 и х 2 - Зх = - 6. Из первого уравнения находим х 1 = 4, х 2 = - 1; второе уравнение не имеет корней.

О т в е т: 4, - 1.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Мы уже научились решать квадратные уравнения. Теперь распространим изученные методы на рациональные уравнения.

Что такое рациональное выражение? Мы уже сталкивались с этим понятием. Рациональными выражениями называются выражения, составленные из чисел, переменных, их степеней и знаков математических действий.

Соответственно, рациональными уравнениями называются уравнения вида: , где - рациональные выражения.

Раньше мы рассматривали только те рациональные уравнения, которые сводятся к линейным. Теперь рассмотрим и те рациональные уравнения, которые сводятся и к квадратным.

Пример 1

Решить уравнение: .

Решение:

Дробь равна 0 тогда и только тогда, когда ее числитель равен 0, а знаменатель не равен 0.

Получаем следующую систему:

Первое уравнение системы - это квадратное уравнение. Прежде чем его решать, поделим все его коэффициенты на 3. Получим:

Получаем два корня: ; .

Поскольку 2 никогда не равно 0, то необходимо, чтобы выполнялись два условия: . Поскольку ни один из полученных выше корней уравнения не совпадает с недопустимыми значениями переменной, которые получились при решении второго неравенства, они оба являются решениями данного уравнения.

Ответ: .

Итак, давайте сформулируем алгоритм решения рациональных уравнений:

1. Перенести все слагаемые в левую часть, чтобы в правой части получился 0.

2. Преобразовать и упростить левую часть, привести все дроби к общему знаменателю.

3. Полученную дробь приравнять к 0, по следующему алгоритму: .

4. Записать те корни, которые получились в первом уравнении и удовлетворяют второму неравенству, в ответ.

Давайте рассмотрим еще один пример.

Пример 2

Решить уравнение: .

Решение

В самом начале перенесем все слагаемые в левую сторону, чтобы справа остался 0. Получаем:

Теперь приведем левую часть уравнения к общему знаменателю:

Данное уравнение эквивалентно системе:

Первое уравнение системы - это квадратное уравнение.

Коэффициенты данного уравнения: . Вычисляем дискриминант:

Получаем два корня: ; .

Теперь решим второе неравенство: произведение множителей не равно 0 тогда и только тогда, когда ни один из множителей не равен 0.

Необходимо, чтобы выполнялись два условия: . Получаем, что из двух корней первого уравнения подходит только один - 3.

Ответ: .

На этом уроке мы вспомнили, что такое рациональное выражение, а также научились решать рациональные уравнения, которые сводятся к квадратным уравнениям.

На следующем уроке мы рассмотрим рациональные уравнения как модели реальных ситуаций, а также рассмотрим задачи на движение.

Список литературы

  1. Башмаков М.И. Алгебра, 8 класс. - М.: Просвещение, 2004.
  2. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра, 8. 5-е изд. - М.: Просвещение, 2010.
  3. Никольский С.М., Потапов М.А., Решетников Н.Н., Шевкин А.В. Алгебра, 8 класс. Учебник для общеобразовательных учреждений. - М.: Просвещение, 2006.
  1. Фестиваль педагогических идей "Открытый урок" ().
  2. School.xvatit.com ().
  3. Rudocs.exdat.com ().

Домашнее задание

При выполнении различных алгебраических преобразований часто удобно пользоваться формулами сокращенного умножения. Зачастую эти формулы применяются не столько для того чтобы сократить процесс умножения, а наоборот скорее для того, чтобы по результату понять, что его можно представить как произведение некоторых множителей. Таким образом, данные формулы нужно уметь применять не только слева направо, но и справа налево. Перечислим основные формулы сокращенного умножения. Квадрат суммы:

Квадрат разности:

Предыдущие две формулы также иногда записывают в несколько другом виде, который даёт нам какое-то выражение для суммы квадратов:

Также нужно понимать, что будет получаться если в скобках в квадрате знаки будут расставлены "нестандартным" способом:

Разность кубов:

Сумма кубов:

Куб суммы:

Куб разности:

Последние две формулы также часто удобно использовать в виде:

Квадратное уравнение и квадратный трехчлен

Пусть квадратное уравнение имеет вид:

Тогда дискриминант находят по формуле:

Если D > 0, то квадратное уравнение имеет два корня, которые находят по формуле :

Если D = 0, то квадратное уравнение имеет один корень (его кратность: 2), который ищется по формуле :

Если D < 0, то квадратное уравнение не имеет корней. В случае когда квадратное уравнение имеет два корня, соответствующий квадратный трехчлен может быть разложен на множители по следующей формуле :

Если квадратное уравнение имеет один корень, то разложение соответствующего квадратного трехчлена на множители задается следующей формулой :

Только в случае если квадратное уравнение имеет два корня (т.е. дискриминант строго больше ноля) выполняется Теорема Виета . Согласно Теореме Виета, сумма корней квадратного уравнения равна:

Произведение корней квадратного уравнения согласно теореме Виета может быть вычислено по формуле:

График параболы задается квадратичной функцией:

При этом координаты вершины параболы могут быть вычислены по следующим формулам. Икс вершины (или точка в которой квадратный трехчлен достигает своего наибольшего или наименьшего значения):

Игрек вершины параболы или максимальное, если ветви параболы направлены вниз (a < 0), либо минимальное, если ветви параболы направлены вверх (a > 0), значение квадратного трехчлена:

Основные свойства степеней

У математических степеней есть несколько важных свойств, перечислим их. При умножении степеней с одинаковыми основаниями показатели степеней складываются:

При делении степеней с одинаковыми основаниями из показателя степени делимого вычитается показатель степени делителя:

При возведении степени в степень показатели степеней перемножаются:

Если перемножаются числа с одинаковой степенью, но разным основанием, то можно сначала перемножить числа, а затем произведение возвести в эту степень. Обратная процедура также возможна, если имеется произведение в степени, то можно каждое из умножаемых возвести в эту степень по отдельности а результаты перемножить:

Также, если делятся числа с одинаковой степенью, но разным основанием, то можно сначала поделить числа, а затем частное возвести в эту степень (обратная процедура также возможна):

Несколько простых свойств степеней:

Последнее свойство выполняется только при n > 0. Ноль можно возводить только в положительную степень. Ну а основное свойство отрицательной степени записывается следующим образом:

Основные свойства математических корней

Математический корень можно представить в виде обычной степени, а затем пользоваться всеми свойствами степеней приведёнными выше. Для представления математического корня в виде степени используют следующую формулу:

Тем не менее можно отдельно выписать ряд свойств математических корней, которые основываются на свойствах степеней описанных выше:

Для арифметических корней выполняется следующее свойство (которое одновременно можно считать определением корня):

Последнее справедливо: если n – нечетное, то для любого a ; если же n – четное, то только при неотрицательном a . Для корня нечетной степени выполняется также следующее равенство (из под корня нечетной степени можно выносить знак "минус"):

Так как значение корня четной степени может быть только неотрицательным , то для таких корней имеется следующее важное свойство:

Некоторые дополнительные сведения из алгебры

Если x 0 – корень многочлена n -ой степени P n (x ), то выполняется следующее равенство (здесь Q n-1 (x ) – некоторый многочлен (n – 1)-ой степени):

Процедура в рамках которой квадратный трехчлен представляется как скобка в квадрате и еще некоторое слагаемое называется выделением полного квадрата . И хотя операцию выделения полного квадрата проще выполнять каждый раз "с ноля" в конкретных цифрах, тем не менее имеется и общая формула, с помощью которой можно записывать сразу результат выделения полного квадрата:

Существует операция, обратная операции сложения дробей с одинаковыми знаменателями, и которая называется почленным делением . Она заключается в том, чтобы наоборот каждое слагаемое из суммы в числителе некоторой дроби, записать отдельно над знаменателем этой дроби. Для операции почленного деления также можно записать общую формулу:

Существует также формула для разложения суммы квадратов на множители :

Решение рациональных уравнений

Решить уравнение – значит найти все его корни. Основной метод решения – путем алгебраических преобразований или замены переменных свести уравнение к равносильному, которое решается просто (например, к квадратному). Если свести уравнение к равносильному не получается, то могут возникать побочные корни. Сомневаетесь – проверяйте корни подстановкой.

Для многих уравнений важно понятие области допустимых значений для корней, далее – ОДЗ. На данном этапе (в рациональных уравнениях, т.е. тех, которые не содержат арифметических корней, тригонометрических функций, логарифмов и т.д.), основное условие которому должны отвечать корни уравнения, это чтобы при их подстановке в изначальный вид уравнения знаменатели дробей не обращались в ноль, т.к. на ноль делить нельзя. Таким образом, ОДЗ включает все возможные значения кроме тех которые обращают в ноль знаменатели дробей.

При решении уравнений (а в дальнейшем и неравенств) нельзя сокращать множители с переменной в левой и правой части уравнения (неравенства), в этом случае Вы потеряете корни. Нужно переносить все выражения налево от знака равно и выносить "сокращающийся" множитель за скобки, в дальнейшем нужно учесть корни, которые он дает.

Для того чтобы произведение двух или более скобок было равно нулю, достаточно чтобы любая из них по отдельности была равна нулю, а остальные существовали. Поэтому в таких случаях нужно по очереди приравнивать все скобки к нулю. В итоговый ответ нужно записать корни всех этих "веток" решения (если конечно эти корни входят в ОДЗ).

Иногда некоторые из дробей в рациональном уравнении можно сократить. Это нужно обязательно попытаться сделать и не упустить ни одной такой возможности. Но при сокращении дроби Вы можете потерять ОДЗ, поэтому дроби нужно сокращать только после записи ОДЗ, или же в конце решения полученные корни подставлять в первоначальное уравнение для проверки существования знаменателей.

Итак, для решения рационального уравнения необходимо:

  1. Разложить все знаменатели всех дробей на множители.
  2. Перенести все слагаемые влево, чтобы справа получился ноль.
  3. Записать ОДЗ.
  4. Сократить дроби, если это возможно.
  5. Привести к общему знаменателю.
  6. Упростить выражение в числителе.
  7. Приравнять числитель к нулю и решать полученное уравнение.
  8. Не забыть проверить корни на соответствие ОДЗ.

Одним из самых распространённых методов решения уравнений является метод замены переменных . Зачастую замена переменных выбирается индивидуально для каждого конкретного примера. При этом важно помнить о двух основных критериях введения замены в уравнения. Итак после введения замены в некоторое уравнение это уравнение должно:

  • во-первых, стать проще;
  • во-вторых, больше не содержать первоначальной переменной.

Кроме того, важно не забывать выполнять обратную замену, т.е. после нахождения значений для новой переменной (для замены), записывать вместо замены то, чему она равна через первоначальную переменную, приравнивать это выражение к найденным значениям для замены и опять решать уравнения.

Отдельно остановимся на алгоритме решения очень распространённых однородных уравнений . Однородные уравнения имеют вид:

Здесь А, В и С – числа, не равные нулю, а f (x ) и g (x ) – некоторые функции с переменной х . Однородные уравнения решают так: разделим все уравнение на g 2 (x ) и получим:

Производим замену переменных:

И решаем квадратное уравнение:

Получив корни этого уравнения не забываем выполнить обратную замену, а также проверить корни на соответствие ОДЗ.

Также при решении некоторых рациональных уравнений хорошо бы помнить про следующие полезные преобразования:

Решение систем рациональных уравнений

Решить систему уравнений – значит найти не просто решение, а комплекты решений, то есть такие значения всех переменных которые, будучи одновременно подставленными в систему, обращают каждое ее уравнение в тождество. При решении систем уравнений можно применять следующие методы (про ОДЗ при этом не забываем):

  • Метод подстановки. Метод состоит в том, чтобы выразив одну из переменных из одного из уравнений, подставить это выражение вместо данной неизвестной в остальные уравнения, уменьшив таким образом количество неизвестных в оставшихся уравнениях. Данная процедура повторяется пока не останется одно уравнение с одной переменной, которое затем и решается. Остальные неизвестные последовательно находятся по уже известным значениям найденных переменных.
  • Метод расщепления системы. Этот метод состоит в том, чтобы разложить одно из уравнений системы на множители. При этом необходимо чтобы справа в этом уравнении был ноль. Тогда приравнивая по очереди каждый множитель этого уравнения к нолю и дописывая остальные уравнения первоначальной системы, получим несколько систем, но каждая из них будет проще первоначальной.
  • Метод сложения и вычитания. Данный метод состоит в том, чтобы складывая либо вычитая два уравнения системы (их предварительно можно и часто нужно умножать на некоторый коэффициент) получить новое уравнение, и заменить им одно из уравнений первоначальной системы. Очевидно, что такая процедура имеет смысл, только если новое уравнение будет получаться значительно проще ранее имевшихся.
  • Метод деления и умножения. Данный метод состоит в том, чтобы разделив либо умножив соответственно левые и правые части двух уравнений системы получить новое уравнение, и заменить им одно из уравнений первоначальной системы. Очевидно, что такая процедура опять таки имеет смысл, только если новое уравнение будет получаться значительно проще ранее имевшихся.

Существуют и другие методы решения систем рациональных уравнений. В числе которых - замена переменных . Зачастую замена переменных подбирается индивидуально под каждый конкретный пример. Но есть два случая, где всегда нужно вводить совершенно определённую замену. Первый из этих случаев, это случай когда оба уравнения системы с двумя неизвестными являются однородными многочленами приравненными к некоторому числу. В этом случае нужно использовать замену:

После применения этой замены, к слову, нужно будет для продолжения решения таких систем использовать метод деления. Второй случай, это симметричные системы с двумя переменными, т.е. такие системы, которые не изменяются при замене x на y , а y на x . В таких системах необходимо применять следующую двойную замену переменных:

При этом, для того чтобы ввести такую замену в симметричную систему, первоначальные уравнения скорее всего придется сильно преобразовывать. Про ОДЗ и обязательность выполнения обратной замены в обоих этих методах, конечно нельзя забывать.

  • Назад
  • Вперёд

Как успешно подготовиться к ЦТ по физике и математике?

Для того чтобы успешно подготовиться к ЦТ по физике и математике, среди прочего, необходимо выполнить три важнейших условия:

  1. Изучить все темы и выполнить все тесты и задания приведенные в учебных материалах на этом сайте. Для этого нужно всего ничего, а именно: посвящать подготовке к ЦТ по физике и математике, изучению теории и решению задач по три-четыре часа каждый день. Дело в том, что ЦТ это экзамен где мало просто знать физику или математику, нужно еще уметь быстро и без сбоев решать большое количество задач по разным темам и различной сложности. Последнему научиться можно только решив тысячи задач.
  2. Выучить все формулы и законы в физике, и формулы и методы в математике . На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
  3. Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.

Успешное, старательное и ответственное выполнение этих трех пунктов позволит Вам показать на ЦТ отличный результат, максимальный из того на что Вы способны.

Нашли ошибку?

Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на почту. Написать об ошибке можно также в социальной сети (). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

Конспект урока по математике

на тему:

« Рациональные уравнения с двумя переменными.

Основные понятия ».

Подготовила:

Учитель математики

МБОУ СОШ №2

Борщова Е. С.

Павловский Посад

Тип урока : изучение нового материала.

Тема урока : рациональные уравнения с двумя переменными. Основные понятия.

Цели :

    ввести основные понятия и термины темы;

    развивать математическую речь и мышление учащихся.

Оборудование: доска для записей, проектор, экран, презентация.

    Организационный момент. (2 – 3 мин.)

(1 слайд)

Здравствуйте, ребята, присаживайтесь! Сегодня мы с вами рассмотрим новую, достаточно интересную тему, которая станет залогом к успешному усвоению будущего материала. Открываем рабочие тетради, записываем число, сегодня 16 октября, классная работа и тему урока: «Рациональные уравнения с двумя переменными. Основные понятия». (учитель тоже самое записывает на доске)

II . Актуализация знаний. (5 мин.)

(2 слайд)

Для того, чтобы начать изучение новой темы нам необходимо вспомнить некоторый материал, который вы уже знаете. Итак, вспомним элементарные функции и их графики:

1. График линейной функции

2. Парабола. График квадратичной функции , (а ≠ 0)

Рассмотрим канонический случай:

3. Кубическая парабола

Кубическая парабола задается функцией

4. График гиперболы

Опять же вспоминаем тривиальную гиперболу

Очень хорошо!

III . Изучение нового материала (сопровождается презентацией). (35 мин.)

(3 слайд)

На предыдущих уроках вы выучили определение рационального уравнения с одной переменной, и сейчас мы говорим, что оно очень схоже с определением рационального уравнения с двумя переменными:

Его записывать не нужно, оно есть в ваших учебниках, еще раз прочитаете его дома и выучите!

А в тетради запишите примеры:

Далее можно сказать, что рациональное уравнение вида h(x; y) = g(x; y) всегда можно преобразовать к виду p(x; y) = 0, где p(x; y) = 0 – рациональное выражение. Для этого нужно переписать выражение так: h (x ; y ) - g (x ; y ) = 0, т. е. p (x ; y ) = 0. последние два равенства запишите себе в тетради!

(4 слайд)

Следующее определение внимательно слушаем и запоминаем, записывать его не нужно!

А в тетради запишите только примеры:

(5 слайд)

Решим такое уравнение (учащиеся записывают решение в тетради, учитель комментирует каждый шаг решения, параллельно отвечая на вопросы детей):

(6 слайд)

Следующее определение, это определение равносильности двух уравнение, его вы тоже уже знаете из предыдущих параграфов, поэтому просто смотрим и слушаем:

Теперь давайте вспомним, какие вы знаете равносильные преобразования:

    Перенос членов уравнения из одной части в другую с противоположными знаками (примеры на доске, их можете не записывать, кто хочет – запишите);

    Умножение или деление обеих частей уравнения на одно и тоже число отличное от нуля или (еще мы знаем) на выражение, всюду отличное от нуля (обратите на это внимание!); (примеры кому нужно запишите).

А какие вы знаете неравносильные преобразования?

1) освобождение от знаменателей, содержащих переменные;

2) возведение обеих частей уравнения в квадрат.

Прекрасно!

(7 слайд)

Следующее понятие, которое мы сегодня рассмотрим, записываем – формула расстояния между двумя точками.

Пишите:

(учащиеся обе теоремы записывают себе в тетради)

Этот рисунок перерисовываем в тетради, подписываем оси координат, центр окружности, отмечаем радиус.

Есть ли у вас какие-то вопросы? (если вопросов нет, продолжаем работу)

(8 слайд)

Рассмотрим примеры, записывайте:

(рис. к П1)
(рис. к П2)

Дети постепенно, исходя их выше записанной теоремы, отвечая на вопросы учителя, самостоятельно решают, записывают решение в тетради, рисунки перерисовывают.

Молодцы! А сейчас, перерисуйте себе такую таблицу, она станет хорошим помощником в дальнейшем при решении задач.

(9 слайд)

Учащиеся аккуратно, каждый в своих тетрадях рисует данную таблицу и заносит в нее данные.

V. Домашнее задание (2 – 3 мин.).

(10 слайд)

До конца урока осталось 2 минуты, открываем дневники, записываем домашнее задание:

1) Глава 2, §5;

2) стр. 71 вопросы для самопроверки;

3) № 5.1; № 5.3 (а, б); № 5.7.

Самоанализ.

Начало урока было достаточно доброжелательным, искренним, открытым и организованным. Класс к уроку был подготовлен. Дети в течение всего урока показывали хорошую работоспособность.

Мною сразу были озвучены цели урока. Цели, предложенные детям на урок, соответствовали программным требованиям, содержанию материала.

В начале урока, в качестве активизации познавательной деятельности, детям было предложено вспомнить некоторый материал по ранее изученному материалу, с чем они справились без каких-либо особых затруднений.

Содержание урока соответствовало требованиям образовательного стандарта.

Структура урока предложена выше. На мой взгляд, целям и типу урока она соответствует. Этапы урока были логически связаны, плавно переходили один в другой. На каждом из этапов подводились итоги. Время распределялось на отдельные этапы по-разному в зависимости от того, какой из них являлся основным. На мой взгляд, оно было распределено рационально. Начало и конец урока были организованными. Темп ведения урока был оптимальным.

После первого этапа актуализации знаний шел основной этап урока – объяснение нового материала. Этот этап был главным, поэтому основное время было уделено именно ему.

Изложение нового материала было логичным, грамотным, на высоком теоретическом и одновременно доступном для детей уровне. Главные мысли по теме всегда мной выделялись и записывались учащимися в рабочие тетради.

Изучение нового материала было проведено в форме небольшой лекции с выполнением элементарных практических заданий, для наиболее быстрого и правильного усвоения материала.

Мною была выполнена презентация в программе PowerPoint. Презентация имела в основном вспомогательную функцию.

С целью контроля усвоения знаний на протяжении всего урока учащиеся решали задачи, по результатам чего я могла судить о степени усвоения теоретического материала каждым из детей. После проведения контроля знаний учителем была проведена коррекционная работа. Те вопросы, которые вызвали у учащихся наибольшее затруднение, были рассмотрены еще раз.

После этого был подведен итог урока и ученикам предложено домашнее задание. Домашнее задание было закрепляющего, развивающего характера. На мой взгляд, оно было посильно для всех детей.

Содержание урока было оптимальным, методы обучения – устный, наглядный и практический. Форма работы – беседа. Я использовала приемы активизации познавательной деятельности – это постановка проблемных вопросов, обобщение по планам обобщенного характера.

Учащиеся на уроке были активными. Они показали умение продуктивно работать, делать выводы по увиденному, умение анализировать и обобщать свои знания. Также дети показали наличие навыков самоконтроля, но лишь единицы были неусидчивы, и им уделялось наибольшее внимание с моей стороны.

Класс к уроку был подготовлен.

Я считаю, что цели поставленные в начале урока достигнуты.