Углерод — характеристика элемента и химические свойства. Что такое окись углерода Влияние углекислого газа на организм человека

Известны два оксида углерода: СО и СO 2 .

Оксид углерода (II) СО (угарный газ). В молекуле этого окси­да атом углерода находится в невозбужденном состоянии. За счет двух р-электронов он образует две связи с атомом кислорода. Тре­тья связь образуется по донорно-акцепторному механизму, при­чем кислород является донором электронной пары, которую атом углерода акцептирует на свободную 2р-орбиталь.

Оксид углерода (II) СО образуется в процессе сгорания угля при недостатке кислорода. В промышленности его получают про­пусканием углекислого газа над раскаленным углем:

СО 2 +С=2СО

В лабораторных условиях СО получают действием концент­рированной серной кислоты на муравьиную кислоту при нагревании (H 2 SO 4 отнимает воду):

НСООН®H 2 O+CO­

Оксид углерода (II) СО - бесцветный газ, без запаха. Очень

к мало растворим в воде. Ядовит. Допустимое содержание СО в

производственных помещениях составляет 0,03 мг в 1 л воздуха. В количествах, опасных для жизни, он содержится в выхлопных газах автомобилей. Отравляющее действие состоит в

том, что он необратимо взаимодействует с гемоглобином крови,

вследствие чего прекращается перенос кислорода от легких к

В химическом отношении СО - инертное соединение (при низкой температуре). При повышении температуры до 200°С и давлении 15 10 5 Па оксид углерода (II) реагирует с NaOH, обра­зуя натриевую соль муравьиной кислоты:

Окисление до СO 2 происходит при температуре 700°С: 2СО+О 2 =2CO 2 ­

При взаимодействии с парами воды образуется СO 2 и Н 2: СО+Н 2 O®CO 2 ­+ H 2 ­

СО - энергичный восстановитель. Он восстанавливает мно­гие металлы из их оксидов, что используется в металлургии при получении металлов из руд:

Fe 2 O 3 +3CO=2Fe+3CO 2 ­

В присутствии катализаторов (платины или активированного угля) или под действием прямого солнечного света угарный газ со­единяется с хлором, образуя чрезвычайно ядовитый газ - фосген:

СО+Сl 2 ®СОСl 2

Уникальной является способность оксида углерода (II) при повышенных температурах и давлениях образовывать с некото­рыми металлами необычные (комплексные) соединения, назы­ваемые карбонилами:

При обычных условиях жидкостями являются карбонилы Ni(CO) 4 , Fe(CO) 5 , Ru(CO) 5 , Os(CO) 5 . Все остальные представляют собой кристаллические вещества. Карбонилы металлов диамаг­нитны, что указывает на наличие спаренных электронов. Все они отличаются высокой устойчивостью по отношению к различным химическим реагентам. Относительная независимость в трактов­ке поведения s- и p-электронов позволяет понять особенность электронной структуры карбонильных комплексов. Если металл, соединяясь с лигандом, обнаруживает невысокие значения ва­лентности, то в s-связях заряд переносится от лиганда к металлу, а в p-связях, наоборот, от металла к лиганду. В результате атом металла переходит в состояние близкое к нейтральному. Именно так ведет себя молекула СО, выполняющая роль акцептора в p- связях.

При нагревании карбонилы металлов разлагаются на СО и ме­талл, что используется для получения металлов высокой чистоты.

Оксид углерода (IV) СО 2 (углекислый газ) образуется в при­роде при горении и гниении органических веществ. Содержится в воздухе (объемная доля 0,03%), а также во многих минеральных источниках (нарзан, боржоми). Выделяется при дыхании живот­ных и растений.

В лаборатории его можно получить действием разбавленных кислот на карбонаты:

СаСО 3 +2НСl=СаСl 2 +CO 2 ­+Н 2 О

В промышленности получают при обжиге известняка:

СаСO 3 =СаО+CO 2 ­

Структурная формула молекулы СО 2: О=С=О. Она имеет ли­нейную форму. Связь углерода с кислородом полярная. Однако благодаря симметричному расположению связей сама молекула СО 2 неполярна.

При обычных условиях СО 2 - бесцветный газ, в 1,5 раза тяже­лее воздуха. Растворим в воде (при 0°С 1,7 л СО 2 в 1 л Н 2 О). Не поддерживает горения и дыхания, но служит источником питания зеленых растений. При сильном охлаждении СO 2 кристаллизуется в виде белой снегообразной массы, которая в спрессованном состоянии испаряется очень медленно, понижая температуру окружающей среды. Этим объясняется ее применение в качестве «сухого льда».

Поговорим о том, как определить характер оксида. Начнем с того, что все вещества принято подразделять на две группы: простые и сложные. Простые вещества подразделяют на металлы и неметаллы. Сложные соединения делят на четыре класса: основания, оксиды, соли, кислоты.

Определение

Так как характер оксидов зависит от их состава, для начала дадим определение данному классу неорганических веществ. Оксиды представляют собой которые состоят из двух элементов. Особенность их в том, что кислород всегда располагается в формуле вторым (последним) элементом.

Самым распространенным вариантом считают взаимодействие с кислородом простых веществ (металлов, неметаллов). Например, при взаимодействии магния с кислородом образуется проявляющий основные свойства.

Номенклатура

Характер оксидов зависит от их состава. Существуют определенные правила, по которым называют такие вещества.

Если оксид образован металлами главных подгрупп, валентность не указывается. Например, оксид кальция СаО. Если же в соединении первым располагается металл подобной подгруппы, который обладает переменной валентностью, то она обязательно указывается римской цифрой. Ставится после названия соединения в круглых скобках. Например, существуют оксиды железа (2) и (3). Составляя формулы оксидов, нужно помнить о том, что сумма степеней окисления в нем должна быть равна нулю.

Классификация

Рассмотрим, как характер оксидов зависит от степени окисления. Металлы, имеющие степень окисления +1 и +2, образуют с кислородом основные оксиды. Специфичной особенностью таких соединений является основный характер оксидов. Такие соединения вступают в химическое взаимодействие с солеобразующими оксидами неметаллов, образуя с ними соли. Кроме того, реагируют с кислотами. Продукт взаимодействия зависит от того, в каком количестве были взяты исходные вещества.

Неметаллы, а также металлы со степенями окисления от +4 до +7, образуют с кислородом кислотные оксиды. Характер оксидов предполагает взаимодействие с основаниями (щелочами). Результат взаимодействия зависит от того, в каком количестве была взята исходная щелочь. При ее недостатке в качестве продукта взаимодействия образуется кислая соль. Например, в реакции оксида углерода (4) с гидроксидом натрия образуется гидрокарбонат натрия (кислая соль).

В случае взаимодействия кислотного оксида с избыточным количеством щелочи продуктом реакции будет средняя соль (карбонат натрия). Характер кислотных оксидов зависит от степени окисления.

Они подразделяются на солеобразующие оксиды (в которых степень окисления элемента равна номеру группы), а также на безразличные оксиды, не способные образовывать соли.

Амфотерные оксиды

Есть и амфотерный характер свойств оксидов. Суть его заключается во взаимодействии этих соединений и с кислотами, и со щелочами. Какие оксиды проявляют двойственные (амфотерные) свойства? К ним относят бинарные соединения металлов со степенью окисления +3, а также оксиды бериллия, цинка.

Способы получения

Существуют различные способы Самым распространенным вариантом считают взаимодействие с кислородом простым веществ (металлов, неметаллов). Например, при взаимодействии магния с кислородом образуется проявляющий основные свойства.

Кроме того, получить оксиды можно и при взаимодействии сложных веществ с молекулярных кислородом. Например, при горении пирита (сульфида железа 2) можно получить сразу два оксида: серы и железа.

Еще одним вариантом получения оксидов считается реакция разложения солей кислородсодержащих кислот. Например, при разложении карбоната кальция можно получить углекислый газ и оксид кальция

Основные и амфотерные оксиды образуются и при разложении нерастворимых оснований. Например, при прокаливании гидроксида железа (3) образуется оксид железа (3), а также водяной пар.

Заключение

Оксиды являются классом неорганических веществ, имеющем широкое промышленное применение. Они используются в строительной сфере, фармацевтической промышленности, медицине.

Кроме того, амфотерные оксиды часто используют в органическом синтезе в качестве катализаторов (ускорителей химических процессов).

(IV ) (СО 2 , диоксид углерода, углекислый газ) представляет собой бесцветный газ без вкуса и запаха, который тяжелее воздуха и растворим в воде .

В обычных условиях твердый диоксид углерода переходит сразу в газообразное состояние, минуя состояние жидкости.

При большом количестве оксид углерода люди начинают задыхаться. Концентрация более 3% приводит к учащенному дыханию, а свыше 10 % наблюдается потеря сознания и смерть.

Химические свойства оксида углерода.

Оксид углерода - это ангидрид угольной кислоты Н 2 СО 3 .

Если пропускать оксид углерода через гидроксид кальция (известковая вода), то наблюдается выпадение осадка белого цвета:

Ca (OH ) 2 + CO 2 = CaCO 3 ↓ + H 2 O,

Если углекислый газ взят в избытке, то наблюдается образование гидрокарбонатов, которые растворяются в воде:

CaCO 3 + H 2 O + CO 2 = Ca(HCO 3) 2 ,

Которые потом распадаются при нагревании:

2KNCO 3 = K 2 CO 3 + H 2 O + CO 2

Применение оксида углерода.

Используют диоксид углерода в различных областях промышленности. В химическом производстве - как хладагент.

В пищевой промышленности используют его как консервант Е290. Хоть ему и присвоили «условно безопасный», на самом деле это не так. Медики доказали, что частое употребление в пищу Е290 приводит к накоплению токсичного ядовитого соединения. Поэтому надо внимательнее читать этикетки на продуктах.

Химические свойства: При обычных температурах углерод химически инертен, при достаточно высоких соединяется со многими элементами, проявляет сильные восстановительные свойства. Химическая активность разных форм углерода убывает в ряду: аморфный углерод, графит, алмаз, на воздухе они воспламеняются при температурах соответственно выше 300-500 °C, 600-700 °C и 850-1000 °C Степени окисления +4 (напр., CO 2), −4 (напр., CH 4), редко +2 (СО, карбонилы металлов), +3 (C 2 N 2); сродство к электрону 1,27 эВ; энергия ионизации при последовательном переходе от С 0 к С 4+ соответственно 11,2604, 24,383, 47,871 и 64,19 эВ.

Наиболее известны три оксидауглерода:

1)Монооксид углеродаCO (представляет собой бесцветный газ без вкуса и запаха. Горюч. Так называемый «запах угарного газа» на самом деле представляет собой запах органических примесей.)

2)Диоксид углеродаCO 2 (Не токсичен, но не поддерживает дыхание. Большая концентрация в воздухе вызывает удушье. Недостаток углекислого газа тоже опасен. Углекислый газ в организмах животных имеет и физиологическое значение, например, участвует в регуляции сосудистого тонуса)

3)Диоксид триуглеродаC 3 O 2 (цветный ядовитый газ с резким, удушливым запахом, легко полимеризующийся в обычных условиях с образованием продукта, нерастворимого в воде, жёлтого, красного или фиолетового цвета.)

Соединения с неметаллами имеют свои собственные названия - метан,тетрафторметан.

Продукты горения углерода в кислороде являются CO и CO 2 (монооксид углеродаидиоксид углеродасоответственно). Известен также неустойчивыйнедооксид углеродаС 3 О 2 (температура плавления −111 °C, температура кипения 7 °C) и некоторые другие оксиды (например C 12 O 9 , C 5 O 2 , C 12 O 12). Графит и аморфный углерод начинают реагировать с водородом при температуре 1200 °C, с фтором при 900 °C.

Углекислый газреагируетс водой , образуя слабую угольную кислоту- H 2 CO 3 , которая образует соли - карбонаты. На Земле наиболее широко распространены карбонатыкальция(минеральные формы -мел,мрамор,кальцит,известняки др.) имагния

43 Вопрос. Кремний

Кремний (Si) – стоит в 3 периоде, IV группе главной подгруппы периодич. системы.

Физ. св-ва: кремний существует в двух модификациях: аморфной и кристаллической. Аморфный кремний – порошок бурого цвета р-ряется в расплавах металлов. Кристаллич. кремний – это кристаллы темно-серого цвета, обладающие стальным блеском, твердый и хрупкий. Кремний состоит из трех изотопов.

Хим. св-ва: электронная конфигурация: 1s 2 2s 2 2p 6 3 s 2 3p 2 . Кремний – неметалл. На внешнем энергетич. ур-не кремний имеет 4 е, что обуславливает его степени окисления: +4, -4, -2. Валентность – 2, 4. Аморфный кремний обладает большей реакционной способностью, чем кристаллический. При обычных условиях он взаимодействует со фтором: Si + 2F 2 = SiF 4 .

Из к-т кремний взаимодействует только со смесью азотной и плавиковой кислот:

По отношению к металлам ведет себя по-разному: в расплавленных Zn, Al, Sn, Pb он хорошо растворяется, но не реагирует с ними; с другими расплавами металлов – с Mg, Cu, Fe кремний взаимодействует с образованием силицидов: Si + 2Mg = Mg2Si. Кремний горит в кислороде: Si + O2 = SiO2 (песок).

Получение: Свободн. кремний м.б.получен прокаливанием с магнием мелкого белого песка, который по хим. составу является почти чистым окислом кремния,SiO2+2Mg=2MgO+Si.

Оксид кремния(II)SiO - смолоподобное аморфное в-во, при обычных условиях устойчиво к действию кислорода. Относится к несолеобразующим оксидам. В природе SiO не встречается. Газообразный моноксид кремния обнаружен в газопылевых облаках межзвездных сред и на солнечных пятнах.Получение: Моноксид кремния можно получить, нагревая кремний в недостатке кислорода при температуре 2Si + O 2 нед → 2SiO. При нагревании в избытке кислорода образуется оксид кремния(IV) SiO2: Si + O 2 изб → SiO 2 .

Также SiO образуется при восстановлении SiO2 кремнием при высоких температурах: SiO 2 + Si → 2SiO.

Oксид кремния(IV)SiO2- бесцветные кристаллы , обладают высокой твёрдостью и прочностью.Св-ва: Относится к группе кислотн. оксидов.При нагревании взаимодействует с основн. оксидами и щелочами.Р-ряется в плавиковой к-те.SiO2 относится к группе стеклообразующих оксидов, т.е. склонен к образованию переохлажденного расплава - стекла.Один из лучших диэлектриков (электрич.ток не проводит).Имеет атомную кристал.решетку.

Нитрид- бинарное неорганич. хим.соединение, представляющее собой соединение кремния и азота Si 3 N 4 .Св-ва: Нитрид кремния обладает хорошими мех.и физ.-хим. св-вами. Благодаря нитридкремниевой связи значит. улучшаются эксплуатационные св-ва огнеупоров на основе карбида кремния, периклаза, форстерита и т. п. Огнеупоры на нитридной связке обладают высокой термо- и износостойкостью,имеют превосходную стойкость к растрескиванию,а также воздействию к-т, щелочей, агрессивных расплавов и паров металлов.

Хлорид кремния(IV)Четыреххлористый кремний - бесцветное в-во, хим. формула кот. SiCl 4 .Применяется в производстве кремний-органич. соединений; применяется для создания дымовых завес. Технич. четыреххлористый кремний предназначен для производства этилсиликатов, аэросила.

Карбид кремния - бинарное неорганич. хим. соединение кремния с углеродом SiC. В природе встречается в виде чрезвычайно редкого минерала - муассанита.

Диоксид кремния или кремнезем – стойкое соединение Si , широко распространен в природе. Реагирует со сплавлением его с щелочами, основными оксидами, образуя соли кремниевой кислоты – силикаты. Получение: в промышленности кремний в чистом виде получают восстановлением диоксида кремния коксом в электропечах: SiO 2 + 2С = Si + 2СO 2 .

В лаборатории кремний получают прокаливанием с магнием или алюминием белого песка:

SiO 2 + 2Mg = 2MgO + Si.

3SiO 2 + 4Al = Al 2 О 3 + 3Si.

Кремний образует к-ты: Н 2 SiO 3 – мета-кремниевая к-та; Н 2 Si 2 O 5 – двуметакремниевая к-та.

Нахождение в природе: минерал кварц – SiO2. Кристаллы кварца имеют форму шестигранной призмы, бесцветные и прозрачные, назыв.горным хрусталем. Аметист – горный хрусталь, окрашенный примесями в лиловый цвет; дымчатый топаз окрашен в буроватый цвет; агат и яшма – кристаллич. разновидности кварца. Аморфный кремнезем менее распространен и существует в виде минерала опала. Диатомит, трепел или кизельгур (инфузорная земля) – землистые формы аморфного кремния.Общ. формула кремниевых к-т – n SiO2? m H2O. В природе нах-ся в основном в виде солей, в свободн. форме выделены немногие, напр, HSiO (ортокремниевая) и H 2 SiO 3 (кремниевая или метакремниевая).

Получение кремниевой кислоты:

1) взаимодействие силикатов щелочн. металлов с к-тами: Na 2 SiO 3 + 2HCl = H 2 SiO 3 + 2NaCl;

2) кремневая к-та явл. термически неустойчивой: H 2 SiO 3 = H 2 O + SiO 2 .

H 2 SiO 3 образует пересыщенные р-ры, в кот. в рез-те полимеризации образует коллоиды. Используя стабилизаторы, можно получить стойкие коллоиды (золи). Их используют в производстве. Без стабилизаторов из р-ра кремниевой к-ты образуется гель, осушив который можно получить силикагель (используют как адсорбент).

Силикаты – соли кремниевой к-ты. Силикаты распространены в природе, земная кора состоит в большинстве из кремнезема и силикатов (полевые шпаты, слюда, глина, тальк и др.). Гранит, базальт и другие горные породы имеют в своем составе силикаты. Изумруд, топаз, аквамарин – кристаллы силикатов. Растворимы только силикаты натрия и калия, остальные – нерастворимы. Силикаты имеют сложн. хим. состав: Каолин Al 2 O 3 ; 2SiO 2 ; 2H 2 O или H 4 Al 2 SiO 9 .

Асбест CaO; 3MgO; 4SiO 2 или CaMgSi 4 O 12 .

Получение: сплавление оксида кремния со щелочами или карбонатами.

Растворимое стекло – силикаты натрия и калия. Жидкое стекло – водн. р-ры силикатов калия и натрия. Его использ. для изготовления кислотоупорного цемента и бетона, керосинонепроницаемых штукатурок, огнезащитных красок. Алюмосиликаты – силикаты, содержащие алюминий (полевой шпат, слюда ). Полевые шпаты состоят помимо оксидов кремния и алюминия из оксидов калия, натрия, кальция. Слюды имеют в своем составе, кроме кремния и алюминия, еще водород, натрий или калий, реже – кальций, магний, железо. Граниты и гнейсы (горные породы) – сост. из кварца, полевого шпата и слюды. Горн. породы и минералы, находясь на пов-ти Земли, вступают во взаимодействие с водой и воздухом, что вызывает их изменение и разрушение. Этот процесс назыв. выветриванием .

Применение: силикатные породы (гранит) использ. как строительный материал, силикаты – в кач-ве сырья при производстве цемента, стекла, керамики, наполнителей; слюду и асбест – как электро– и термоизоляцию.